cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379580 Denominators of the partial sums of the reciprocals of the powerfree part function (A055231).

Original entry on oeis.org

1, 2, 6, 6, 30, 5, 35, 35, 35, 70, 770, 2310, 30030, 15015, 5005, 5005, 85085, 170170, 3233230, 3233230, 9699690, 4849845, 111546435, 111546435, 111546435, 223092870, 223092870, 223092870, 6469693230, 1078282205, 33426748355, 33426748355, 9116385915, 18232771830
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

References

  • D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.

Crossrefs

Cf. A055231, A370900, A370901, A379579 (numerators), A379582.

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/powfree[n], {n, 1, 50}]]]
  • PARI
    powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powfree(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A055231(k)).

A379581 Numerators of the partial alternating sums of the reciprocals of the powerfree part function (A055231).

Original entry on oeis.org

1, 1, 5, -1, 1, -2, 1, -104, 1, -19, 1, -769, -7687, -4916, -261, -1262, -20453, -57923, -1066503, -5979161, -17475593, -8958244, -201189767, -79457304, -42275159, -87410483, -13046193, -23669663, -612055937, -1025912126, -28568429291, -128848674356, -125809879051
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Examples

			Fractions begin with 1, 1/2, 5/6, -1/6, 1/30, -2/15, 1/105, -104/105, 1/105, -19/210, 1/2310, -769/2310, ...
		

Crossrefs

Cf. A055231, A328013, A370900, A370901, A379579, A379582 (denominators).

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/powfree[n], {n, 1, 50}]]]
  • PARI
    powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powfree(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A055231(k)).
a(n)/A379582(n) = A * n^(1/2) + B * n^(1/3) + O(n^(1/5)), where A = ((9-12*sqrt(2))/23) * A328013, and B = ((2^(5/3) - 3*2^(1/3) - 1)/(2^(5/3) - 2^(1/3) + 1)) * (zeta(2/3)/zeta(2)) * Product_{p prime} (1 + (p^(1/3)-1)/(p*(p^(2/3)-p^(1/3)+1))) = 1.42776088919948241359... .
Showing 1-2 of 2 results.