cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A370900 Partial sums of the powerfree part function (A055231).

Original entry on oeis.org

1, 3, 6, 7, 12, 18, 25, 26, 27, 37, 48, 51, 64, 78, 93, 94, 111, 113, 132, 137, 158, 180, 203, 206, 207, 233, 234, 241, 270, 300, 331, 332, 365, 399, 434, 435, 472, 510, 549, 554, 595, 637, 680, 691, 696, 742, 789, 792, 793, 795, 846, 859, 912, 914, 969, 976, 1033
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 52.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, p, 1]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[pfp[#] &, 100]]
  • PARI
    pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, f[i, 1], 1));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += pfp(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} A055231(k).
a(n) = c * n^2 / 2 + O(R(n)), where c = Product_{p prime} (1 - (p^2+p-1)/(p^3*(p+1))) = 0.649606699337... (A191622), R(n) = x^(3/2) * exp(-c_1 * log(n)^(3/5) / log(log(n))^(1/5)) unconditionally, or x^(7/5) * exp(c_2 * log(n) / log(log(n))) assuming the Riemann hypothesis, and c_1 and c_2 are positive constants (Tóth, 2017).

A379579 Numerators of the partial sums of the reciprocals of the powerfree part function (A055231).

Original entry on oeis.org

1, 3, 11, 17, 91, 16, 117, 152, 187, 381, 4261, 13553, 178499, 90322, 30441, 35446, 607587, 1300259, 24875091, 25521737, 77027101, 38733998, 895731799, 932913944, 1044460379, 2097501253, 2320594123, 2352464533, 68444564327, 11443370128, 355822756173, 389249504528
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Examples

			Fractions begin with 1, 3/2, 11/6, 17/6, 91/30, 16/5, 117/35, 152/35, 187/35, 381/70, 4261/770, 13553/2310, ...
		

References

  • D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.

Crossrefs

Cf. A055231, A328013, A370900, A370901, A379580 (denominators), A379581.

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/powfree[n], {n, 1, 50}]]]
  • PARI
    powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powfree(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A055231(k)).
a(n)/A379580(n) = A * n^(1/2) + B * n^(1/3) + O(n^(1/5)), where A = A328013, and B = (zeta(2/3)/zeta(2)) * Product_{p prime} (1 + (p^(1/3)-1)/(p*(p^(2/3)-p^(1/3)+1))) = -2.59305556147555965163... .

A379580 Denominators of the partial sums of the reciprocals of the powerfree part function (A055231).

Original entry on oeis.org

1, 2, 6, 6, 30, 5, 35, 35, 35, 70, 770, 2310, 30030, 15015, 5005, 5005, 85085, 170170, 3233230, 3233230, 9699690, 4849845, 111546435, 111546435, 111546435, 223092870, 223092870, 223092870, 6469693230, 1078282205, 33426748355, 33426748355, 9116385915, 18232771830
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

References

  • D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.

Crossrefs

Cf. A055231, A370900, A370901, A379579 (numerators), A379582.

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/powfree[n], {n, 1, 50}]]]
  • PARI
    powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powfree(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A055231(k)).

A379581 Numerators of the partial alternating sums of the reciprocals of the powerfree part function (A055231).

Original entry on oeis.org

1, 1, 5, -1, 1, -2, 1, -104, 1, -19, 1, -769, -7687, -4916, -261, -1262, -20453, -57923, -1066503, -5979161, -17475593, -8958244, -201189767, -79457304, -42275159, -87410483, -13046193, -23669663, -612055937, -1025912126, -28568429291, -128848674356, -125809879051
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Examples

			Fractions begin with 1, 1/2, 5/6, -1/6, 1/30, -2/15, 1/105, -104/105, 1/105, -19/210, 1/2310, -769/2310, ...
		

Crossrefs

Cf. A055231, A328013, A370900, A370901, A379579, A379582 (denominators).

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/powfree[n], {n, 1, 50}]]]
  • PARI
    powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powfree(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A055231(k)).
a(n)/A379582(n) = A * n^(1/2) + B * n^(1/3) + O(n^(1/5)), where A = ((9-12*sqrt(2))/23) * A328013, and B = ((2^(5/3) - 3*2^(1/3) - 1)/(2^(5/3) - 2^(1/3) + 1)) * (zeta(2/3)/zeta(2)) * Product_{p prime} (1 + (p^(1/3)-1)/(p*(p^(2/3)-p^(1/3)+1))) = 1.42776088919948241359... .

A379582 Denominators of the partial alternating sums of the reciprocals of the powerfree part function (A055231).

Original entry on oeis.org

1, 2, 6, 6, 30, 15, 105, 105, 105, 210, 2310, 2310, 30030, 15015, 1001, 1001, 17017, 34034, 646646, 3233230, 9699690, 4849845, 111546435, 37182145, 37182145, 74364290, 74364290, 74364290, 2156564410, 3234846615, 100280245065, 100280245065, 100280245065, 200560490130
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Crossrefs

Cf. A055231, A370900, A370901, A379580, A379581 (numerators).

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/powfree[n], {n, 1, 50}]]]
  • PARI
    powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powfree(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A055231(k)).
Showing 1-5 of 5 results.