cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A385043 The sum of the unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 1, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 4, 26, 42, 1, 40, 30, 72, 32, 1, 48, 54, 48, 50, 38, 60, 56, 6, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 3, 72, 8, 80, 90, 60, 120, 62, 96, 80, 1, 84, 144, 68, 90, 96
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The number of these divisors is A385042(n), and the largest of them is A367168(n).

Crossrefs

The unitary analog of A353900.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), this sequence (exponentially 2^n), A385045 (5-rough), A385046 (3-smooth), A385047 (power of 2), A385048 (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], p^e + 1, 1]; a[ 1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1<
    				

Formula

Multiplicative with a(p^e) = p^(A209229(e)) + 1.
a(n) <= A034448(n), with equality if and only if n is in A138302.
a(n) <= A353900(n), with equality if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1/(p*(p+1)) + Sum_{k>=2} (1/p^(2^k)-1/p^(2^k-1))) = 1.21427559551509410114... .

A367169 a(n) is the sum of the exponents in the prime factorization of n that are powers of 2.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 0, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 1, 2, 2, 0, 3, 1, 3, 1, 0, 2, 2, 2, 4, 1, 2, 2, 1, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 1, 2, 1, 2, 2, 1, 4, 1, 2, 3, 0, 2, 3, 1, 3, 2, 3, 1, 2, 1, 2, 3, 3, 2, 3, 1, 5, 4, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); sum(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), f[i, 2], 0));}
    
  • Python
    from sympy import factorint
    def A367169(n): return sum(e for e in factorint(n).values() if not(e&-e)^e) # Chai Wah Wu, Nov 10 2023

Formula

a(n) = A001222(A367168(n)).
Additive with a(p^e) = A048298(e).
a(n) <= A001222(n), with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = -P(2) + Sum_{k>=1} 2^k * (P(2^k) - P(2^k+1)) = 0.28425245481079272416..., where P(s) is the prime zeta function.

A367513 The exponentially evil part of n: the largest unitary divisor of n that is an exponentially evil number (A262675).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e * (1 - ThueMorse[e])); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(hammingweight(f[i, 2])%2, 1, f[i, 1]^f[i, 2]));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367513(n): return prod(p**e for p, e in factorint(n).items() if e.bit_count()&1^1) # Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = p^(e*A010059(e)) = p^A102391(e).
a(n) = n/A367514(n).
A001221(a(n)) = A367512(n).
A034444(a(n)) = A367516(n).
a(n) >= 1, with equality if and only if n is an exponentially odious number (A270428).
a(n) <= n, with equality if and only if n is an exponentially evil number (A262675).

A367514 The exponentially odious part of n: the largest unitary divisor of n that is an exponentially odious number (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Comments

First differs from A056192 at n = 32, and from A270418 and A367168 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e*ThueMorse[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(hammingweight(f[i, 2])%2, f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367514(n): return prod(p**e for p, e in factorint(n).items() if e.bit_count()&1) # Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = p^(e*A010060(e)) = p^A102392(e).
a(n) = n/A367513(n).
A001221(a(n)) = A293439(n).
A034444(a(n)) = A367515(n).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= n, with equality if and only if n is an exponentially odious number (A270428).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 0.88585652437242918295..., and f(x) = (x+2)/(2*(x+1)) + (x/2) * Product_{k>=0} (1 - x^(2^k)).

A367170 The number of divisors of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 1, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 2, 3, 4, 1, 6, 2, 8, 2, 1, 4, 4, 4, 9, 2, 4, 4, 2, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 2, 4, 2, 4, 4, 2, 12, 2, 4, 6, 1, 4, 8, 2, 6, 4, 8, 2, 3, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Crossrefs

Similar sequences: A365401, A365402.

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e+1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), f[i, 2] + 1, 1));}

Formula

Multiplicative with a(p^e) = A048298(e) + 1.
a(n) = A000005(A367168(n)).
a(n) <= A000005(n), with equality if and only if n is in A138302.

A367171 The sum of divisors of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 1, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 4, 31, 42, 1, 56, 30, 72, 32, 1, 48, 54, 48, 91, 38, 60, 56, 6, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 3, 72, 8, 80, 90, 60, 168, 62, 96, 104, 1, 84, 144, 68, 126
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], (p^(e+1)-1)/(p-1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), (f[i, 1]^(f[i, 2]+1)-1)/(f[i, 1]-1), 1));}

Formula

Multiplicative with a(p^e) = (p^(A048298(e)+1)-1)/(p-1).
a(n) = A000203(A367168(n)).
a(n) <= A000203(n), with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2)/zeta(3) = 1.368432... (A306633).

A370078 a(n) = log_2(A370077(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^(k = IntegerExponent[e, 2]), k, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = my(e = valuation(n, 2)); if(n >> e == 1, e, 0);
    a(n) = vecsum(apply(x -> s(x), factor(n)[, 2]));

Formula

a(n) = A007814(A005361(A367168(n))).
Additive with a(p^e) = log_2(e) if e is a power of 2, and 0 otherwise.
a(n) = 0 if and only if n is an exponentially odd number (A268335).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * (P(2^k)-P(2^k+1)) = 0.36616241880640645934..., where P(s) is the prime zeta function .

A370077 The product of exponents of the prime factorization of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    ispow2(n) = n >> valuation(n, 2) == 1;
    a(n) = vecprod(apply(x -> if(ispow2(x), x, 1), factor(n)[, 2]));

Formula

a(n) = A005361(A367168(n)).
a(n) = A006519(A005361(n)).
a(n) = 2^A370078(n).
a(n) = 1 if and only if n is an exponentially odd number (A268335).
a(n) <= A005361(n), with equality if and only if n is an exponentially 2^n-number (A138302).
Multiplicative with a(p^e) = e if e is a power of 2, and 1 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (2^k-1)*(1/p^(2^k) - 1/p^(2^k+1))) = 1.47219167074464124662... .

A385042 The number of unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A367515 at n = 128.
The sum of these divisors is A385043(n), and the largest of them is A367168(n).

Crossrefs

The unitary analog of A353898.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), this sequence (exponentially 2^n), A385044 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := Boole[e == 2^IntegerExponent[e, 2]] + 1; a[ 1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x == 1<
    				

Formula

Multiplicative with a(p^e) = A209229(e) + 1.
a(n) <= A034444(n), with equality if and only if n is in A138302.
a(n) <= A353898(n), with equality if and only if n is squarefree (A005117).

A385007 The largest unitary divisor of n that is a biquadratefree number (A046100).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A053165 at n = 32 = 2^5: a(32) = 1 while A053165(32) = 2.
First differs from A383764 at n = 32 = 2^5: a(32) = 1 while A383764(32) = 32.
Equivalently, a(n) is the least divisor d of n such that n/d is a 4-full number (A036967).

Crossrefs

The largest unitary divisor of n that is: A000265 (odd), A006519 (power of 2), A055231 (squarefree), A057521 (powerful), A065330 (5-rough), A065331 (3-smooth), A350388 (square), A350389 (exponentially odd), A360539 (cubefree), A360540 (cubefull), A366126 (cube), A367168 (exponentially 2^n), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e < 4, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] < 4, f[i, 1]^f[i, 2], 1)); }

Formula

a(n) = 1 if and only if n is a 4-full number (A036967).
a(n) = n if and only if n is a biquadratefree number (A046100).
Multiplicative with a(p^e) = p^e if e <= 3, and 1 otherwise.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(-s) + p^(2-2*s) - p^(1-2*s) - p^(2-3*s) + p^(3-3*s) - p^(3-4*s) + p^(-4*s)).
Sum_{k=1..n} a(k) ~ c * zeta(2) * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^6 + 1/p^8 - 1/p^9) = 0.56331392082909224894... .
Showing 1-10 of 11 results. Next