cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370077 The product of exponents of the prime factorization of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    ispow2(n) = n >> valuation(n, 2) == 1;
    a(n) = vecprod(apply(x -> if(ispow2(x), x, 1), factor(n)[, 2]));

Formula

a(n) = A005361(A367168(n)).
a(n) = A006519(A005361(n)).
a(n) = 2^A370078(n).
a(n) = 1 if and only if n is an exponentially odd number (A268335).
a(n) <= A005361(n), with equality if and only if n is an exponentially 2^n-number (A138302).
Multiplicative with a(p^e) = e if e is a power of 2, and 1 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (2^k-1)*(1/p^(2^k) - 1/p^(2^k+1))) = 1.47219167074464124662... .

A386258 Exponent of the highest power of 2 dividing the product of exponents of the prime factorization of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jul 17 2025

Keywords

Comments

First differs from A386259 at n = 36.
First differs from A370078 at n = 64.
The first occurrence of k = 0, 1, 2, ... is at n = A085629(2^k) = 1, 4, 16, 144, 1296, 20736, 518400, ... .
The asymptotic density of the occurrences of 1 in this sequence is the asymptotic density of numbers whose prime factorization has only odd exponents except for one exponent that is of the form 4*k+2 (k >= 0) which equals A065463 * Sum_{p prime} p^2/(p^4+p^3+p-1) = 0.22670657681840536721... .

Crossrefs

Programs

  • Mathematica
    a[n_] := IntegerExponent[Times @@ FactorInteger[n][[;; , 2]], 2]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> valuation(x, 2), factor(n)[, 2]));

Formula

a(n) = A007814(A005361(n)).
Additive with a(p^e) = A007814(e).
a(n) = 0 if and only if n is an exponentially odd number (A268335).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} f(1/p) = 0.37572872586497617473..., where f(x) = Sum_{k>=1} x^(2^k)/(1-x^(2^k)).

A372505 a(n) = log_2(A368473(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, May 04 2024

Keywords

Comments

The first position of k, for k = 0, 1, ..., is 1, 4, 15, 126, 1134, ..., which is the position of A085629(2^k) in A138302.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{p = Times @@ FactorInteger[n][[;; , 2]], e}, e = IntegerExponent[p, 2]; If[p == 2^e, e, Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(p, e); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); e = valuation(p, 2); if(p >> e == 1, print1(e, ", ")));}

Formula

a(n) = log_2(A005361(A138302(n))).
Showing 1-3 of 3 results.