A357684 The squarefree part (A007913) of numbers whose squarefree part is a unitary divisor (A335275).
1, 2, 3, 1, 5, 6, 7, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 1, 26, 7, 29, 30, 31, 33, 34, 35, 1, 37, 38, 39, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 55, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 73, 74, 3, 19, 77, 78, 79
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Rafael Jakimczuk, Two Topics in Number Theory: Sum of Divisors of the Primorial and Sum of Squarefree Parts, International Mathematical Forum, Vol. 12, No. 7 (2017), pp. 331-338.
Programs
-
Mathematica
s[n_] := If[AllTrue[(f = FactorInteger[n])[[;; , 2]], # == 1 || EvenQ[#] &], i = Position[f[[;; , 2]], 1] // Flatten; Times @@ f[[i, 1]], Nothing]; Array[s, 100]
-
PARI
s(n) = {my(f = factor(n), ans = 1); for(k = 1, #f~, if(f[k,2] > 1 && f[k,2]%2, ans = 0)); if(ans, ans = prod(k = 1, #f~, if(f[k,2] == 1, f[k,1], 1))) }; for(n = 1, 100, if(s(n) > 0, print1(s(n), ", ")))
Formula
Sum_{k, a(k) <= x} ~ c*x^2 + o(x^2), where c = (3/Pi^2) * Sum_{k>=1} f(k)/k^4 = 0.32103327852028541131..., and f(k) = Product_{p prime | k} (p/(p+1)) (Jakimczuk, 2017).
Sum_{k=1..n} a(k) ~ c'*x^2 + o(x^2), where c' = c / (A065465)^2 = 0.41313480468422995583... .
Comments