cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A377990 a(n) = sigma(sigma(A350388(n))) * sigma(sigma(A350389(n))), where A350388 and A350389 are the largest unitary divisor of n that is a square, and the largest unitary divisor of n that is an exponentially odd number, respectively.

Original entry on oeis.org

1, 4, 7, 8, 12, 28, 15, 24, 14, 39, 28, 56, 24, 60, 60, 32, 39, 56, 42, 96, 63, 91, 60, 168, 32, 96, 90, 120, 72, 195, 63, 104, 124, 120, 124, 112, 60, 168, 120, 234, 96, 252, 84, 224, 168, 195, 124, 224, 80, 128, 195, 192, 120, 360, 195, 360, 186, 234, 168, 480, 96, 252, 210, 128, 224, 403, 126, 312, 252, 403, 195
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2024

Keywords

Comments

Differs from A051027 at 52, 98, 156, 164, 245, ..., = A377991.

Crossrefs

Programs

  • PARI
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A377990(n) = (sigma(sigma(A350388(n))) * sigma(sigma(A350389(n))));

Formula

a(n) = A051027(A350388(n)) * A051027(A350389(n)).
a(n) = sigma(A351568(n)) * sigma(A351569(n)).

A374485 Lexicographically earliest infinite sequence such that a(i) = a(j) => A350388(i) = A350388(j) and A351569(i) = A351569(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 11, 12, 13, 13, 14, 10, 15, 16, 17, 18, 19, 13, 20, 21, 22, 23, 24, 25, 26, 18, 27, 28, 29, 28, 30, 31, 20, 32, 33, 22, 34, 35, 36, 37, 26, 28, 38, 39, 40, 26, 41, 29, 42, 26, 42, 43, 33, 20, 44, 45, 34, 46, 47, 48, 49, 50, 51, 34, 49, 26, 52, 53, 54, 55, 56, 34, 57, 43, 58, 59, 60, 48, 61, 62, 63, 42, 64, 33, 65, 66, 44, 67, 49, 42, 68
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A350388(n), A351569(n)].
For all i, j >= 1: a(i) = a(j) => A000203(i) = A000203(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351569(n) = sigma(A350389(n));
    Aux374485(n) = [A350388(n), A351569(n)];
    v374485 = rgs_transform(vector(up_to, n, Aux374485(n)));
    A374485(n) = v374485[n];

A350389 a(n) is the largest unitary divisor of n that is an exponentially odd number (A268335).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 8, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 24, 1, 26, 27, 7, 29, 30, 31, 32, 33, 34, 35, 1, 37, 38, 39, 40, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 54, 55, 56, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^f[i,2], 1));} \\ Amiram Eldar, Sep 18 2023
  • Python
    from math import prod
    from sympy import factorint
    def A350389(n): return prod(p**e if e % 2 else 1 for p, e in factorint(n).items()) # Chai Wah Wu, Feb 24 2022
    

Formula

Multiplicative with a(p^e) = p^e if e is odd and 1 otherwise.
a(n) = n/A350388(n).
A001222(a(n)) = A350387(n).
a(n) = 1 if and only if n is a positive square (A000290 \ {0}).
a(n) = n if and only if n is an exponentially odd number (A268335).
Sum_{k=1..n} a(k) ~ (1/2)*c*n^2, where c = Product_{p prime} (1 - p/(1+p+p^2+p^3)) = 0.7406196365...
Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(3*s-1)). - Amiram Eldar, Sep 18 2023

A056624 Number of unitary square divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Unitary analog of A046951.
The number of exponential divisors (A322791) of n that are cubefree (A004709). - Amiram Eldar, Jun 03 2025

Examples

			n=256, it has 5 square divisors of which only 2,{1,256} are unitary, 3 divisors are not.
n=124 has 2 (1 and 4) square divisors, both of them unitary a(124) = 2.
n=108 has 12 divisors, 4 square divisors: {1,4,9,36} of which 1 and 4 are unitary, 9 and 36 are not. So a(108)=2. The largest unitary square divisor of 108 is 4 with 1 prime divisor so a(108) = 2^1 = 2.
		

Crossrefs

Programs

  • Maple
    isA056624 := (n, d) -> igcd(n, d) = d and igcd(n/d, d) = d and igcd(n/d^2, d) = 1:
    a := n -> nops(select(k -> isA056624(n, k), [seq(1..n)])):  # Peter Luschny, Jun 13 2025
  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
    f[p_, e_] := 2^(1 - Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 03 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, issquare(d))); \\ Michel Marcus, Jul 28 2017
    
  • Python
    from sympy import factorint
    def A056624(n): return 1<Chai Wah Wu, Aug 03 2024
    
  • Python
    def is_A056624(n, d): return gcd(n, d) == d and gcd(n//d, d) == d and gcd(n//(d*d), d) == 1
    def a(n): return len([k for k in range(1, n+1) if is_A056624(n, k)])
    print([a(n) for n in range(1, 106)])  # Peter Luschny, Jun 13 2025
  • Scheme
    (define (A056624 n) (if (= 1 n) n (* (A000079 (A059841 (A067029 n))) (A056624 (A028234 n))))) ;; Antti Karttunen, Jul 28 2017
    

Formula

a(n) = 2^r, where r is the number of prime factors of the largest unitary square divisor of n.
Multiplicative with a(p^e) = 2^(1-(e mod 2)). - Vladeta Jovovic, Dec 13 2002
Dirichlet g.f.: zeta(s)*zeta(2*s)/zeta(3*s). - Werner Schulte, Apr 03 2018
Sum_{k=1..n} a(k) ~ n*Pi^2/(6*zeta(3)) + sqrt(n)*zeta(1/2)/zeta(3/2). - Vaclav Kotesovec, Feb 07 2019
a(n) = 2^A162641(n). - Amiram Eldar, Sep 26 2022
a(n) = A034444(A350388(n)). - Amiram Eldar, Sep 09 2023

Extensions

More terms from Vladeta Jovovic, Dec 13 2002

A384052 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a square.

Original entry on oeis.org

1, 1, 2, 4, 4, 2, 6, 7, 9, 4, 10, 8, 12, 6, 8, 16, 16, 9, 18, 16, 12, 10, 22, 14, 25, 12, 26, 24, 28, 8, 30, 31, 20, 16, 24, 36, 36, 18, 24, 28, 40, 12, 42, 40, 36, 22, 46, 32, 49, 25, 32, 48, 52, 26, 40, 42, 36, 28, 58, 32, 60, 30, 54, 64, 48, 20, 66, 64, 44
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Crossrefs

Unitary analog of A206369.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), this sequence (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), A384058 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[OddQ[e], 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,2]%2, 1, 0));}

Formula

Multiplicative with a(p^e) = p^e-1 if e is odd, and p^e if e is even.
a(n) = n * A047994(n) / A384054(n).
a(n) = A047994(A350389(n)) * A350388(n).
Dirichlet g.f.: zeta(s-1) * zeta(2*s) * Product_{p prime} (1 - 1/p^s - 1/p^(2*s) + 1/p^(2*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.74061963657217328604... .

A384054 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is an exponentially odd number.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 8, 8, 10, 11, 9, 13, 14, 15, 15, 17, 16, 19, 15, 21, 22, 23, 24, 24, 26, 27, 21, 29, 30, 31, 32, 33, 34, 35, 24, 37, 38, 39, 40, 41, 42, 43, 33, 40, 46, 47, 45, 48, 48, 51, 39, 53, 54, 55, 56, 57, 58, 59, 45, 61, 62, 56, 63, 65, 66, 67, 51
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Crossrefs

Unitary analog of A384041.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), this sequence (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), A384058 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[OddQ[e], 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,2]%2, 0, 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A384054(n): return prod(p**e-(e&1^1) for p,e in factorint(n).items()) # Chai Wah Wu, May 21 2025

Formula

Multiplicative with a(p^e) = p^e if e is odd, and p^e-1 if e is even.
a(n) = n * A047994(n) / A384052(n).
a(n) = A047994(A350388(n)) * A350389(n).
Dirichlet g.f.: zeta(s-1) * zeta(2*s) * Product_{p prime} (1 - 2/p^(2*s) + 1/p^(3*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 2/p^4 + 1/p^5) = 0.95692470821076622881... .

A358347 a(n) is the sum of the unitary divisors of n that are squares.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 1, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 1, 26, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 50, 1, 1, 1, 1, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 10, 1, 1, 26, 5, 1, 1, 1, 17, 82, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2022

Keywords

Comments

The number of unitary divisors of n that are squares is A056624(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, f[i,1]^f[i,2] + 1));}

Formula

a(n) >= 1 with equality if and only if n is an exponentially odd number (A268335).
Multiplicative with a(p^e) = p^e + 1 if e is even, and 1 otherwise.
a(n) = A034448(n)/A358346(n).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(5/2)) = 0.6491241554... .
Dirichlet g.f.: zeta(s)*zeta(2*s-2)/zeta(3*s-2). - Amiram Eldar, Jan 29 2023
a(n) = A034448(A350388(n)). - Amiram Eldar, Sep 09 2023

A071974 Numerator of rational number i/j such that Sagher map sends i/j to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2002

Keywords

Comments

The Sagher map sends Product p_i^e_i / Product q_i^f_i (p_i and q_i being distinct primes) to Product p_i^(2e_i) * Product q_i^(2f_i-1). This is multiplicative.

Examples

			The Sagher map sends the following fractions to 1, 2, 3, 4, ...: 1/1, 1/2, 1/3, 2/1, 1/5, 1/6, 1/7, 1/4, 3/1, ...
		

Crossrefs

Cf. A071975. Differs from A056622 at a(32).
For other bijective mappings from integers to positive rationals see A002487, A020652/A020653, A038568/A038569, A229994/A077610, A295515.
Cf. A307868.

Programs

  • Haskell
    a071974 n = product $ zipWith (^) (a027748_row n) $
       map (\e -> (1 - e `mod` 2) * e `div` 2) $ a124010_row n
    -- Reinhard Zumkeller, Jun 15 2012
    
  • Mathematica
    f[{p_, a_}] := If[EvenQ[a], p^(a/2), 1]; a[n_] := Times@@(f/@FactorInteger[n])
    Table[Sqrt@ SelectFirst[Reverse@ Divisors@ n, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 104}] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a(n)=local(v=factor(n)~); prod(k=1,length(v),if(v[2,k]%2,1,v[1,k]^(v[2,k]/2)))
    
  • Python
    from math import prod
    from sympy import factorint
    def A071974(n): return prod(p**(e>>1) for p, e in factorint(n).items() if e&1^1) # Chai Wah Wu, Jul 27 2024

Formula

If n=Product p_i^e_i, then a_n=Product p_i^f(e_i), where f(n)=n/2 if n is even and f(n)=0 if n is odd. - Reiner Martin, Jul 08 2002
a(n^2) = n, A071975(n^2) = 1, cf. A000290; a(2*(2*n-1)^2) = 2*n+1, A071975(2*(2*n-1)^2) = 2, cf. A077591. - Reinhard Zumkeller, Jul 10 2011
From Amiram Eldar, Nov 02 2023, Jul 26 2024: (Start)
a(n) = sqrt(A350388(n)) (square root of largest unitary divisor of n that is a square).
Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-1)). (End)
From Vaclav Kotesovec, May 05 2025: (Start)
Let f(s) = Product_{p prime} (1 - (p^s + p)/((p^s + 1)*p^(2*s))).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A307868 = Product_{p prime} (1 - 2/(p*(1+p))) = 0.4716806136129978680752356330804820874259263820069868836357372554177321...
f'(1) = f(1) * Sum_{p prime} (5*p+3)*log(p) / ((p+1)*(p^2+p-2)) = f(1) * 2.1244279471327068377850377690765768532203174482128717024402373817115555...
and gamma is the Euler-Mascheroni constant A001620. (End)

Extensions

More terms from Reiner Martin, Jul 08 2002
Additional references supplied by Kevin Ryde added by N. J. A. Sloane, May 31 2012

A351568 Sum of the divisors of the largest unitary divisor of n that is a square.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 1, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 1, 31, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 91, 1, 1, 1, 1, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 13, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 1, 1, 13, 1, 7, 1, 1, 1, 1, 1, 57, 13
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2022

Keywords

Comments

Obviously, all terms are odd.

Crossrefs

Cf. A000203, A002117, A350388, A351569, A351570, A351575 (positions of primes).

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], (p^(e + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 23 2022 *)
  • PARI
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351568(n) = sigma(A350388(n));
    
  • Python
    from math import prod
    from sympy import factorint
    def A351568(n): return prod(1 if e % 2 else (p**(e+1)-1)//(p-1) for p, e in factorint(n).items()) # Chai Wah Wu, Feb 24 2022

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is even and 1 otherwise.
a(n) = A000203(A350388(n)).
a(n) = A000203(n) / A351569(n).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (zeta(3)/3) * Product_{p prime} (1 + 1/p^(3/2) + 1/p^2 - 1/p^(5/2)) = 1.008259499413... . - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(2*s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1) - 1/p^(3*s-2)). - Amiram Eldar, Sep 03 2023

A367168 The largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Comments

First differs from A056192 at n = 32 and from A270418 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367168(n): return prod(p**e for p,e in factorint(n).items() if not(e&-e)^e) # Chai Wah Wu, Nov 10 2023

Formula

Multiplicative with a(p^e) = p^A048298(e).
a(n) <= n, with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 0.881513... (A065465).
Showing 1-10 of 37 results. Next