cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A377990 a(n) = sigma(sigma(A350388(n))) * sigma(sigma(A350389(n))), where A350388 and A350389 are the largest unitary divisor of n that is a square, and the largest unitary divisor of n that is an exponentially odd number, respectively.

Original entry on oeis.org

1, 4, 7, 8, 12, 28, 15, 24, 14, 39, 28, 56, 24, 60, 60, 32, 39, 56, 42, 96, 63, 91, 60, 168, 32, 96, 90, 120, 72, 195, 63, 104, 124, 120, 124, 112, 60, 168, 120, 234, 96, 252, 84, 224, 168, 195, 124, 224, 80, 128, 195, 192, 120, 360, 195, 360, 186, 234, 168, 480, 96, 252, 210, 128, 224, 403, 126, 312, 252, 403, 195
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2024

Keywords

Comments

Differs from A051027 at 52, 98, 156, 164, 245, ..., = A377991.

Crossrefs

Programs

  • PARI
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A377990(n) = (sigma(sigma(A350388(n))) * sigma(sigma(A350389(n))));

Formula

a(n) = A051027(A350388(n)) * A051027(A350389(n)).
a(n) = sigma(A351568(n)) * sigma(A351569(n)).

A007913 Squarefree part of n: a(n) is the smallest positive number m such that n/m is a square.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 2, 33, 34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 2, 73, 74, 3, 19, 77
Offset: 1

Views

Author

R. Muller, Mar 15 1996

Keywords

Comments

Also called core(n). [Not to be confused with the squarefree kernel of n, A007947.]
Sequence read mod 4 gives A065882. - Philippe Deléham, Mar 28 2004
This is an arithmetic function and is undefined if n <= 0.
A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), lcm(A007947(b),c) = A007947(n) = "squarefree kernel" of n and bc = A019554(n) = "outer square root" of n. [Corrected by M. F. Hasler, Mar 01 2018]
If n > 1, the quantity f(n) = log(n/core(n))/log(n) satisfies 0 <= f(n) <= 1; f(n) = 0 when n is squarefree and f(n) = 1 when n is a perfect square. One can define n as being "epsilon-almost squarefree" if f(n) < epsilon. - Kurt Foster (drsardonicus(AT)earthlink.net), Jun 28 2008
a(n) is the smallest natural number m such that product of geometric mean of the divisors of n and geometric mean of the divisors of m are integers. Geometric mean of the divisors of number n is real number b(n) = Sqrt(n). a(n) = 1 for infinitely many n. a(n) = 1 for numbers from A000290: a(A000290(n)) = 1. For n = 8; b(8) = sqrt(8), a(n) = 2 because b(2) = sqrt(2); sqrt(8) * sqrt(2) = 4 (integer). - Jaroslav Krizek, Apr 26 2010
Dirichlet convolution of A010052 with the sequence of absolute values of A055615. - R. J. Mathar, Feb 11 2011
Booker, Hiary, & Keating outline a method for bounding (on the GRH) a(n) for large n using L-functions. - Charles R Greathouse IV, Feb 01 2013
According to the formula a(n) = n/A000188(n)^2, the scatterplot exhibits the straight lines y=x, y=x/4, y=x/9, ..., i.e., y=x/k^2 for all k=1,2,3,... - M. F. Hasler, May 08 2014
The Dirichlet inverse of this sequence is A008836(n) * A063659(n). - Álvar Ibeas, Mar 19 2015
a(n) = 1 if n is a square, a(n) = n if n is a product of distinct primes. - Zak Seidov, Jan 30 2016
All solutions of the Diophantine equation n*x=y^2 or, equivalently, G(n,x)=y, with G being the geometric mean, are of the form x=k^2*a(n), y=k*sqrt(n*a(n)), where k is a positive integer. - Stanislav Sykora, Feb 03 2016
If f is a multiplicative function then Sum_{d divides n} f(a(d)) is also multiplicative. For example, A010052(n) = Sum_{d divides n} mu(a(d)) and A046951(n) = Sum_{d divides n} mu(a(d)^2). - Peter Bala, Jan 24 2024

Crossrefs

See A000188, A007947, A008833, A019554, A117811 for related information, specific to n.
See A027746, A027748, A124010 for factorization data for n.
Analogous sequences: A050985, A053165, A055231.
Cf. A002734, A005117 (range of values), A059897, A069891 (partial sums), A090699, A350389.
Related to A006519 via A225546.

Programs

  • Haskell
    a007913 n = product $
                zipWith (^) (a027748_row n) (map (`mod` 2) $ a124010_row n)
    -- Reinhard Zumkeller, Jul 06 2012
    
  • Magma
    [ Squarefree(n) : n in [1..256] ]; // N. J. A. Sloane, Dec 23 2006
    
  • Maple
    A007913 := proc(n) local f,a,d; f := ifactors(n)[2] ; a := 1 ; for d in f do if type(op(2,d),'odd') then a := a*op(1,d) ; end if; end do: a; end proc: # R. J. Mathar, Mar 18 2011
    # second Maple program:
    a:= n-> mul(i[1]^irem(i[2], 2), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 20 2015
    seq(n / expand(numtheory:-nthpow(n, 2)), n=1..77);  # Peter Luschny, Jul 12 2022
  • Mathematica
    data = Table[Sqrt[n], {n, 1, 100}]; sp = data /. Sqrt[] -> 1; sfp = data/sp /. Sqrt[x] -> x (* Artur Jasinski, Nov 03 2008 *)
    Table[Times@@Power@@@({#[[1]],Mod[ #[[2]],2]}&/@FactorInteger[n]),{n,100}] (* Zak Seidov, Apr 08 2009 *)
    Table[{p, e} = Transpose[FactorInteger[n]]; Times @@ (p^Mod[e, 2]), {n, 100}] (* T. D. Noe, May 20 2013 *)
    Sqrt[#] /. (c_:1)*a_^(b_:0) -> (c*a^b)^2& /@ Range@100 (* Bill Gosper, Jul 18 2015 *)
  • PARI
    a(n)=core(n)
    
  • Python
    from sympy import factorint, prod
    def A007913(n):
        return prod(p for p, e in factorint(n).items() if e % 2)
    # Chai Wah Wu, Feb 03 2015
    
  • Sage
    [squarefree_part(n) for n in (1..77)] # Peter Luschny, Feb 04 2015

Formula

Multiplicative with a(p^k) = p^(k mod 2). - David W. Wilson, Aug 01 2001
a(n) modulo 2 = A035263(n); a(A036554(n)) is even; a(A003159(n)) is odd. - Philippe Deléham, Mar 28 2004
Dirichlet g.f.: zeta(2s)*zeta(s-1)/zeta(2s-2). - R. J. Mathar, Feb 11 2011
a(n) = n/( Sum_{k=1..n} floor(k^2/n)-floor((k^2 -1)/n) )^2. - Anthony Browne, Jun 06 2016
a(n) = rad(n)/a(n/rad(n)), where rad = A007947. This recurrence relation together with a(1) = 1 generate the sequence. - Velin Yanev, Sep 19 2017
From Peter Munn, Nov 18 2019: (Start)
a(k*m) = A059897(a(k), a(m)).
a(n) = n / A008833(n).
(End)
a(A225546(n)) = A225546(A006519(n)). - Peter Munn, Jan 04 2020
From Amiram Eldar, Mar 14 2021: (Start)
Theorems proven by Copil and Panaitopol (2007):
Lim sup_{n->oo} a(n+1)-a(n) = oo.
Lim inf_{n->oo} a(n+1)-a(n) = -oo.
Sum_{k=1..n} 1/a(k) ~ c*sqrt(n) + O(log(n)), where c = zeta(3/2)/zeta(3) (A090699). (End)
a(n) = A019554(n)^2/n. - Jianing Song, May 08 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/30 = 0.328986... . - Amiram Eldar, Oct 25 2022
a(n) = A007947(A350389(n)). - Amiram Eldar, Jan 20 2024

Extensions

More terms from Michael Somos, Nov 24 2001
Definition reformulated by Daniel Forgues, Mar 24 2009

A350388 a(n) is the largest unitary divisor of n that is a square.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 1, 25, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2021

Keywords

Comments

First differs from A056623 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, f[i,1]^f[i,2]));} \\ Amiram Eldar, Oct 01 2023

Formula

Multiplicative with a(p^e) = p^e if e is even and 1 otherwise.
a(n) = n/A350389(n).
a(n) = A071974(n)^2.
a(n) = A008833(n) if and only if n is in A335275.
A001222(a(n)) = A350386(n).
a(n) = 1 if and only if n is an exponentially odd number (A268335).
a(n) = n if and only if n is a positive square (A000290 \ {0}).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (1/3) * Product_{p prime} (1 + sqrt(p)/(1 + p + p^2)) = 0.59317173657411718128... [updated Oct 16 2022]
Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-2)). - Amiram Eldar, Oct 01 2023
Sum_{d|n, gcd(d, n/d) == 1} A076479(d) * a(n/d) = A191414(sqrt(n)) if n is a square, and 0 otherwise. - Amiram Eldar, Jun 01 2025

A350390 a(n) is the largest exponentially odd divisor of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 6, 13, 14, 15, 8, 17, 6, 19, 10, 21, 22, 23, 24, 5, 26, 27, 14, 29, 30, 31, 32, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 22, 15, 46, 47, 24, 7, 10, 51, 26, 53, 54, 55, 56, 57, 58, 59, 30, 61, 62, 21, 32, 65, 66, 67, 34, 69
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2021

Keywords

Comments

First differs from A331737 at n = 16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^e, p^(e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(f[i,2] - !(f[i,2]%2)));} \\ Amiram Eldar, Sep 18 2023
  • Python
    from math import prod
    from sympy.ntheory.factor_ import primefactors, core
    def A350390(n): return n*core(n)//prod(primefactors(n)) # Chai Wah Wu, Dec 30 2021
    

Formula

Multiplicative with a(p^e) = p^e if e is odd and p^(e-1) otherwise.
a(n) = n/A336643(n).
a(n) = n if and only if n is an exponentially odd number (A268335).
Sum_{k=1..n} a(k) ~ (1/2)*c*n^2, where c = Product_{p prime} 1-(p-1)/(p^2*(p+1)) = 0.8073308216... (A306071).
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) + 1/p^(2*s-1)). - Amiram Eldar, Sep 18 2023

A384052 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a square.

Original entry on oeis.org

1, 1, 2, 4, 4, 2, 6, 7, 9, 4, 10, 8, 12, 6, 8, 16, 16, 9, 18, 16, 12, 10, 22, 14, 25, 12, 26, 24, 28, 8, 30, 31, 20, 16, 24, 36, 36, 18, 24, 28, 40, 12, 42, 40, 36, 22, 46, 32, 49, 25, 32, 48, 52, 26, 40, 42, 36, 28, 58, 32, 60, 30, 54, 64, 48, 20, 66, 64, 44
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Crossrefs

Unitary analog of A206369.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), this sequence (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), A384058 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[OddQ[e], 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,2]%2, 1, 0));}

Formula

Multiplicative with a(p^e) = p^e-1 if e is odd, and p^e if e is even.
a(n) = n * A047994(n) / A384054(n).
a(n) = A047994(A350389(n)) * A350388(n).
Dirichlet g.f.: zeta(s-1) * zeta(2*s) * Product_{p prime} (1 - 1/p^s - 1/p^(2*s) + 1/p^(2*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.74061963657217328604... .

A384054 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is an exponentially odd number.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 8, 8, 10, 11, 9, 13, 14, 15, 15, 17, 16, 19, 15, 21, 22, 23, 24, 24, 26, 27, 21, 29, 30, 31, 32, 33, 34, 35, 24, 37, 38, 39, 40, 41, 42, 43, 33, 40, 46, 47, 45, 48, 48, 51, 39, 53, 54, 55, 56, 57, 58, 59, 45, 61, 62, 56, 63, 65, 66, 67, 51
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Crossrefs

Unitary analog of A384041.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), this sequence (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), A384058 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[OddQ[e], 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,2]%2, 0, 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A384054(n): return prod(p**e-(e&1^1) for p,e in factorint(n).items()) # Chai Wah Wu, May 21 2025

Formula

Multiplicative with a(p^e) = p^e if e is odd, and p^e-1 if e is even.
a(n) = n * A047994(n) / A384052(n).
a(n) = A047994(A350388(n)) * A350389(n).
Dirichlet g.f.: zeta(s-1) * zeta(2*s) * Product_{p prime} (1 - 2/p^(2*s) + 1/p^(3*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 2/p^4 + 1/p^5) = 0.95692470821076622881... .

A055076 Multiplicity of Max{gcd(d, n/d)} when d runs over divisors of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 4, 1, 4, 2, 2, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 2, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 2, 2, 2, 1, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Labos Elemer, Jun 13 2000

Keywords

Comments

Number of distinct values of gcd(d, n!/d) if d runs over divisors of n! seems to be A046951(n).
a(n) = 1 iff n is a square. - Bernard Schott, Oct 22 2019
a(n) is the number of the unitary divisors (cf. A077610) of n that are exponentially odd (A268335). - Amiram Eldar, Nov 11 2022
The number of infinitary divisors of n that are squarefree (A005117). - Amiram Eldar, Jan 09 2024

Examples

			n=120, the set of gcd(d, 120/d) values for the 16 divisors of 120 is {1,2,1,2,1,2,1,2,2,1,2,1,2,1,2,1}. The max is 2 and it occurs 8 times, so a(120)=8. This sequence seems to consist of powers of 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n->(p->coeff(p, x, degree(p)))(add(x^igcd(d, n/d), d=divisors(n))):
    seq(a(n), n=1..105);  # Alois P. Heinz, Jul 21 2015
  • Mathematica
    a[n_] := With[{g = GCD[#, n/#]& /@ Divisors[n]}, Count[g, Max[g]]];
    Array[a, 105] (* Jean-François Alcover, Mar 28 2017 *)
    f[p_, e_] := 2^Mod[e, 2]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    A055076(n) = if(1==n,n,my(es=factor(n)[,2]~); prod(i=1,#es,2^(es[i]%2))); \\ Antti Karttunen, Apr 05 2021
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A055076 n) (if (= 1 n) n (* (+ 1 (A000035 (A067029 n))) (A055076 (A028234 n))))) ;; Antti Karttunen, Dec 02 2017

Formula

Multiplicative with a(p^e) = 2^(e mod 2). - Vladeta Jovovic, Dec 13 2002
a(n) = 2^A162642(n). - Antti Karttunen, Dec 02 2017
a(n) = A034444(A007913(n)). [Found by LODA miner, see C. Krause link. Essentially the same formula as the above ones] - Antti Karttunen, Apr 05 2021
From Amiram Eldar, Sep 09 2023: (Start)
a(n) = A034444(A350389(n)).
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 2/p^s). (End)
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - 3/p^(2*s) + 2/p^(3*s)).
Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * f(s).
Sum_{k=1..n} a(k) ~ (Pi^2 * f(1) * n / 6) * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = A065473 = Product_{primes p} (1 - 3/p^2 + 2/p^3) = 0.286747428434478734107892712789838446434331844097056995641477859336652243...,
f'(1) = f(1) * Sum_{primes p} 6*log(p) / (p^2 + p - 2) = f(1) * 2.798014228561519243358371276385174449737670294137200281334256087932048625...
and gamma is the Euler-Mascheroni constant A001620. (End)

A358346 a(n) is the sum of the unitary divisors of n that are exponentially odd (A268335).

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 9, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 36, 1, 42, 28, 8, 30, 72, 32, 33, 48, 54, 48, 1, 38, 60, 56, 54, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 84, 72, 72, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2022

Keywords

Comments

The number of unitary divisors of n that are exponentially odd is A055076(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + If[OddQ[e], p^e, 0]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + if(f[i,2]%2,  f[i,1]^f[i,2], 0));}

Formula

a(n) >= 1 with equality if and only if n is a square (A000290).
a(n) <= A033634(n) with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = p^e + 1 if e is odd, and 1 otherwise.
a(n) = A034448(n)/A358347(n).
Sum_{k=1..n} a(k) ~ n^2/2.
From Amiram Eldar, Sep 14 2023: (Start)
a(n) = A034448(A350389(n)).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(2*s-1)). (End)

A367168 The largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Comments

First differs from A056192 at n = 32 and from A270418 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367168(n): return prod(p**e for p,e in factorint(n).items() if not(e&-e)^e) # Chai Wah Wu, Nov 10 2023

Formula

Multiplicative with a(p^e) = p^A048298(e).
a(n) <= n, with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 0.881513... (A065465).

A351569 Sum of divisors of the largest unitary divisor of n that is an exponentially odd number.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 15, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 60, 1, 42, 40, 8, 30, 72, 32, 63, 48, 54, 48, 1, 38, 60, 56, 90, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 120, 72, 120, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 15, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2022

Keywords

Crossrefs

Cf. A000203, A013662, A028982 (positions of odd terms), A268335 (exponentially odd numbers), A350389, A351568, A351571.
Coincides with A001615 on squarefree numbers, A005117.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 23 2022 *)
  • PARI
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351569(n) = sigma(A350389(n));
    
  • Python
    from math import prod
    from sympy import factorint
    def A351569(n): return prod((p**(e+1)-1)//(p-1) if e % 2 else 1 for p, e in factorint(n).items()) # Chai Wah Wu, Feb 24 2022

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd and 1 otherwise.
a(n) = A000203(A350389(n)).
a(n) = A000203(n) / A351568(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(4)/2 = Pi^4/180 = 0.541161... . - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(2*s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s - 1/p^(2*s-2)). - Amiram Eldar, Sep 03 2023
Showing 1-10 of 28 results. Next