cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 310 results. Next

A284003 a(n) = A007913(A283477(n)) = A019565(A006068(n)).

Original entry on oeis.org

1, 2, 6, 3, 30, 15, 5, 10, 210, 105, 35, 70, 7, 14, 42, 21, 2310, 1155, 385, 770, 77, 154, 462, 231, 11, 22, 66, 33, 330, 165, 55, 110, 30030, 15015, 5005, 10010, 1001, 2002, 6006, 3003, 143, 286, 858, 429, 4290, 2145, 715, 1430, 13, 26, 78, 39, 390, 195, 65, 130, 2730, 1365, 455, 910, 91, 182, 546, 273, 510510, 255255, 85085, 170170, 17017
Offset: 0

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Comments

A squarefree analog of A302783. Each term is either a divisor or a multiple of the next one. In contrast to A302033 at each step the previous term can be multiplied (or divided), not just by a single prime, but possibly by a product of several distinct ones, A019565(A000975(k)). E.g., a(3) = 3, a(4) = 2*5*a(3) = 30. - Antti Karttunen, Apr 17 2018

Crossrefs

Programs

Formula

a(n) = A007913(A283477(n)).
Other identities. For all n >= 0:
A048675(a(n)) = A006068(n).
A046523(a(n)) = A284004(n).
It seems that A001222(a(n)) = A209281(n).
a(n) = A019565(A006068(n)) = A302033(A064707(n)). - Antti Karttunen, Apr 16 2018

Extensions

Name amended with a second formula by Antti Karttunen, Apr 16 2018

A326126 Sum of all other divisors of n except the squarefree part of n: a(n) = sigma(n) - A007913(n).

Original entry on oeis.org

0, 1, 1, 6, 1, 6, 1, 13, 12, 8, 1, 25, 1, 10, 9, 30, 1, 37, 1, 37, 11, 14, 1, 54, 30, 16, 37, 49, 1, 42, 1, 61, 15, 20, 13, 90, 1, 22, 17, 80, 1, 54, 1, 73, 73, 26, 1, 121, 56, 91, 21, 85, 1, 114, 17, 106, 23, 32, 1, 153, 1, 34, 97, 126, 19, 78, 1, 109, 27, 74, 1, 193, 1, 40, 121, 121, 19, 90, 1, 181, 120, 44, 1, 203, 23, 46, 33, 158, 1, 224, 21
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^Mod[e, 2]; a[n_] := Module[{f = FactorInteger[n]}, Times @@ f1 @@@ f - Times @@ f2 @@@ f]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326126(n) = (sigma(n)-core(n));

Formula

a(n) = A000203(n) - A007913(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/20 = 0.4934802... . - Amiram Eldar, Mar 21 2024

A326128 a(n) = n - A007913(n), where A007913 gives the squarefree part of n.

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 6, 8, 0, 0, 9, 0, 0, 0, 15, 0, 16, 0, 15, 0, 0, 0, 18, 24, 0, 24, 21, 0, 0, 0, 30, 0, 0, 0, 35, 0, 0, 0, 30, 0, 0, 0, 33, 40, 0, 0, 45, 48, 48, 0, 39, 0, 48, 0, 42, 0, 0, 0, 45, 0, 0, 56, 63, 0, 0, 0, 51, 0, 0, 0, 70, 0, 0, 72, 57, 0, 0, 0, 75, 80, 0, 0, 63, 0, 0, 0, 66, 0, 80, 0, 69, 0, 0, 0, 90, 0, 96, 88, 99, 0, 0, 0, 78, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; a[n_] := n - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326128(n) = (n-core(n));

Formula

a(n) = n - A007913(n).
a(n) = A326127(n) + A033879(n).
a(n) >= A066503(n).
a(n) = A007913(n) * A336642(n). - Antti Karttunen, Jul 28 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/2 - Pi^2/30 = 0.171013... . - Amiram Eldar, Mar 21 2024

A056191 Characteristic cube divisor of n: cube of g = gcd(K,F), where K is the largest square root divisor of n (A000188) and F = n/(K*K) = A007913(n) is its squarefree part; g^2 divides K^2 = A008833(n) = g^2*L^2 and g divides F = gf.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Comments

This is not the largest cube which divides n. It is canonical, since the decomposition n = KKgggf is unique (factors are defined above and dependent on n).

Examples

			If n=24, largest square divisor is 4, squarefree part is 6, g=2, a(24)=8; n=81, largest square divisor is 81, both F and g is 1, a(81)=1.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=With[{sf=Times@@Power@@@({#[[1]], Mod[#[[2]], 2]}&/@FactorInteger[n])}, GCD[sf, n/sf]]; Table[a[n]^3, {n, 1, 100}] (* Vincenzo Librandi, Oct 08 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1 || !(f[i,2]%2), 1,  f[i,1]^3));} \\ Amiram Eldar, Sep 05 2023

Formula

a(n) = A055229(n)^3 = g^3 = ggg; n = (KK)*(ggg)*f = K^2*g^3*f = KK*a(n)^3*f.
Multiplicative with a(p^e)=1 for even e, a(p)=1, a(p^e)=p^3 for odd e > 1. - Vladeta Jovovic, May 01 2002

A069891 a(n) = Sum_{k=1..n} A007913(k), the squarefree part of k.

Original entry on oeis.org

0, 1, 3, 6, 7, 12, 18, 25, 27, 28, 38, 49, 52, 65, 79, 94, 95, 112, 114, 133, 138, 159, 181, 204, 210, 211, 237, 240, 247, 276, 306, 337, 339, 372, 406, 441, 442, 479, 517, 556, 566, 607, 649, 692, 703, 708, 754, 801, 804, 805, 807, 858, 871, 924, 930, 985, 999
Offset: 0

Views

Author

Dean Hickerson, Apr 09 2002

Keywords

Comments

Sum_{k=1..n, k squarefree} (1/k) = Sum{k=1..n} (mu(k)^2/k) = (1/zeta(2))*(log(n) + gamma - 2*zeta'(2)/zeta(2)) + O(1/sqrt(n)). (Suryanarayana)

References

  • D. Suryanarayana, Asymptotic formula for sum_{n <= x} mu^{2}(n)/n, Indian J. Math. 9 (1967/1968) 543-545.

Crossrefs

Programs

  • Magma
    [0] cat [&+[Squarefree(k):k in [1..n]]:n in [1..60]]; // Marius A. Burtea, Dec 19 2019
    
  • Mathematica
    a[n_] := Sum[If[d == 1, 1, Times@@(1-#1[[1]]^2&) /@ FactorInteger[d]] * Binomial[Floor[n/d^2]+1, 2], {d, 1, Floor[Sqrt[n]]}]; Array[a, 100, 0] (* corrected by Amiram Eldar, Apr 02 2020 *)
  • PARI
    a(n) = sum(k=1, n, core(k)); \\ Michel Marcus, Dec 19 2019

Formula

a(n) = Sum_{d=1..floor(sqrt(n))} f(d)*binomial(floor(n/d^2)+1, 2) where f(d)=A046970(d) is the product of 1-p^2 over all prime divisors p of d.
a(n) is asymptotic to r*n^2, where r = Pi^2/30 = 0.3289868...

A285102 a(n) = A007913(A285101(n)).

Original entry on oeis.org

2, 6, 210, 72930, 620310, 278995269860970, 12849025509071310, 492608110538467706074890, 1342951001046021018427857601026746070, 37793589449865555275592120894959094883390892772270, 728982633030274864467458719371654181886452163442582606072870, 28339554655955912942523491885490197708224606885407444005070
Offset: 0

Views

Author

Antti Karttunen, Apr 15 2017

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A242378(k,n) = { while(k>0,n = A003961(n); k = k-1); n; };
    A285102(n) = { if(0==n,2,lcm(A285102(n-1),A242378(n,A285102(n-1)))/gcd(A285102(n-1),A242378(n,A285102(n-1)))); };
    
  • Python
    # uses [A003961, A242378]
    from sympy import factorint, prime, primepi
    from sympy.ntheory.factor_ import core
    from operator import mul
    def a003961(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**f[i] for i in f])
    def a242378(k, n):
        while k>0:
            n=a003961(n)
            k-=1
        return n
    l=[2]
    for n in range(1, 12):
        x=l[n - 1]
        l.append(x*a242378(n, x))
    print([core(j) for j in l]) # Indranil Ghosh, Jun 27 2017
  • Scheme
    (definec (A285102 n) (if (zero? n) 2 (/ (lcm (A285102 (- n 1)) (A242378bi n (A285102 (- n 1)))) (gcd (A285102 (- n 1)) (A242378bi n (A285102 (- n 1)))))))
    

Formula

a(0) = 2, for n > 0, a(n) = lcm(a(n-1),A242378(n,a(n-1))) / gcd(a(n-1),A242378(n,a(n-1))).
a(n) = A007913(A285101(n)).
Other identities. For all n >= 0:
A001221(a(n)) = A001222(a(n)) = A285103(n).
A048675(a(n)) = A068052(n).

A322589 Lexicographically earliest such sequence a that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = 0 for odd primes, and f(n) = A007913(n) for any other number.

Original entry on oeis.org

1, 2, 3, 1, 3, 4, 3, 2, 1, 5, 3, 6, 3, 7, 8, 1, 3, 2, 3, 9, 10, 11, 3, 4, 1, 12, 6, 13, 3, 14, 3, 2, 15, 16, 17, 1, 3, 18, 19, 5, 3, 20, 3, 21, 9, 22, 3, 6, 1, 2, 23, 24, 3, 4, 25, 7, 26, 27, 3, 8, 3, 28, 13, 1, 29, 30, 3, 31, 32, 33, 3, 2, 3, 34, 6, 35, 36, 37, 3, 9, 1, 38, 3, 10, 39, 40, 41, 11, 3, 5, 42, 43, 44, 45, 46, 4, 3, 2, 21, 1, 3, 47, 3, 12, 48
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux322589(n) = if((n>2)&&isprime(n),0,core(n));
    v322589 = rgs_transform(vector(up_to, n, Aux322589(n)));
    A322589(n) = v322589[n];

A349374 Dirichlet convolution of Kimberling's paraphrases (A003602) with squarefree part of n (A007913).

Original entry on oeis.org

1, 3, 5, 4, 8, 15, 11, 6, 12, 24, 17, 20, 20, 33, 42, 7, 26, 36, 29, 32, 58, 51, 35, 30, 29, 60, 34, 44, 44, 126, 47, 9, 90, 78, 94, 48, 56, 87, 106, 48, 62, 174, 65, 68, 110, 105, 71, 35, 54, 87, 138, 80, 80, 102, 146, 66, 154, 132, 89, 168, 92, 141, 153, 10, 172, 270, 101, 104, 186, 282, 107, 72, 110, 168, 167, 116
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347954, A347955, A347956, A349136, A349370, A349371, A349372, A349374, A349375, A349390, A349431, A349444, A349447 for Dirichlet convolutions of other sequences with A003602.

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, k[#] * s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A349374(n) = sumdiv(n,d,A003602(n/d)*core(d));

Formula

a(n) = Sum_{d|n} A003602(n/d) * A007913(d).

A293218 a(n) = A007913(A292270(n)).

Original entry on oeis.org

1, 1, 1, 1, 13, 1, 1, 1, 38, 1, 3, 26, 31, 1, 1, 1, 103, 73, 1, 42, 14, 7, 91, 3, 58, 14, 1, 170, 303, 1, 1, 1, 66, 1, 385, 91, 93, 301, 65, 563, 1093, 1, 11, 355, 38, 118, 83, 1, 1254, 763, 1, 1043, 39, 1, 249, 141, 238, 19, 71, 43, 133, 11, 781, 1, 649, 1, 554, 1081, 614, 1, 1633, 5, 317, 1398, 1, 269, 626, 10, 527, 1285, 1191, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2017

Keywords

Crossrefs

Cf. A292938 (gives the positions of ones).

Programs

Formula

a(n) = A007913(A292270(n)).

A248470 Put a [+] b = A(A(a) + A(b)), where A = A007913; a(n) is the [+]-sum of binomial(n,i), i=0,...,n.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 3, 2, 1, 1, 6, 38, 167, 2095, 1, 2030, 3, 15, 21, 138, 263, 2, 57, 1266, 3470, 7, 145742, 10, 4682335, 110, 38, 618, 366, 83, 3343, 3279, 206555, 215547, 489378, 52010, 21, 5127, 11, 54663, 6203, 5041187, 194, 63038411, 407039, 7602, 2, 2474
Offset: 0

Views

Author

Vladimir Shevelev, Oct 27 2014

Keywords

Comments

By definition, all terms are squarefree (A005117).

Examples

			For n=4, we have binomials: 1,4,6,4,1.
To obtain a(4), we form the sums 1[+]4 = 1[+]1 = 2; 2[+]6 = 2; 2[+]4 = 2[+]1 = 3; 3[+]1=1. So a(4)=1.
		

Crossrefs

Programs

  • Mathematica
    a7913[n_]:=a7913[n]=Times@@(#[[1]]^Mod[#[[2]],2])&[Transpose[FactorInteger[n]]];
    ab[x_,y_]:=ab[x,y]=a7913[a7913[x]+a7913[y]];
    Table[Fold[ab,First[#],Rest[#]]&[Binomial[n,#]&[Range[0,n]]],{n,0,50}] (* Peter J. C. Moses, Oct 27 2014 *)
  • PARI
    a(n) = {s = 0; for (i=0, n, s = core(core(binomial(n, i)) + core(s))); s;} \\ Michel Marcus, Nov 14 2014

Extensions

More terms from Peter J. C. Moses, Oct 27 2014
Showing 1-10 of 310 results. Next