cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A326127 a(n) = A326126(n) - n, where A326126 gives the sum of all other divisors of n except the squarefree part of n.

Original entry on oeis.org

-1, -1, -2, 2, -4, 0, -6, 5, 3, -2, -10, 13, -12, -4, -6, 14, -16, 19, -18, 17, -10, -8, -22, 30, 5, -10, 10, 21, -28, 12, -30, 29, -18, -14, -22, 54, -36, -16, -22, 40, -40, 12, -42, 29, 28, -20, -46, 73, 7, 41, -30, 33, -52, 60, -38, 50, -34, -26, -58, 93, -60, -28, 34, 62, -46, 12, -66, 41, -42, 4, -70, 121, -72, -34, 46, 45, -58, 12
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^Mod[e, 2]; a[n_] := Module[{f = FactorInteger[n]}, Times @@ f1 @@@ f - Times @@ f2 @@@ f - n]; a[1] = -1; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326127(n) = (sigma(n)-core(n)-n);

Formula

a(n) = A000203(n) - A007913(n) - n = A001065(n) - A007913(n).
a(n) = A326128(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/20 - 1/2 = -0.00651977... . - Amiram Eldar, Mar 21 2024

A326129 a(n) = gcd(A326127(n), A326128(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 1, 12, 4, 6, 1, 16, 1, 18, 1, 10, 8, 22, 6, 1, 10, 2, 21, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 1, 4, 20, 46, 1, 1, 1, 30, 3, 52, 12, 38, 2, 34, 26, 58, 3, 60, 28, 2, 1, 46, 12, 66, 1, 42, 4, 70, 1, 72, 34, 2, 3, 58, 12, 78, 1, 1, 38, 82, 7, 62, 40, 54, 2, 88, 2, 70, 1, 58, 44, 70, 30
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Comments

Question: Are there any other numbers than those in A000396 that satisfy a(k) = A326128(k)?
See also comments in A336641, where all such k should reside. - Antti Karttunen, Jul 29 2020

Crossrefs

Programs

Formula

a(n) = n - A336645(n). - Antti Karttunen, Jul 29 2020

A326128 a(n) = n - A007913(n), where A007913 gives the squarefree part of n.

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 6, 8, 0, 0, 9, 0, 0, 0, 15, 0, 16, 0, 15, 0, 0, 0, 18, 24, 0, 24, 21, 0, 0, 0, 30, 0, 0, 0, 35, 0, 0, 0, 30, 0, 0, 0, 33, 40, 0, 0, 45, 48, 48, 0, 39, 0, 48, 0, 42, 0, 0, 0, 45, 0, 0, 56, 63, 0, 0, 0, 51, 0, 0, 0, 70, 0, 0, 72, 57, 0, 0, 0, 75, 80, 0, 0, 63, 0, 0, 0, 66, 0, 80, 0, 69, 0, 0, 0, 90, 0, 96, 88, 99, 0, 0, 0, 78, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; a[n_] := n - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326128(n) = (n-core(n));

Formula

a(n) = n - A007913(n).
a(n) = A326127(n) + A033879(n).
a(n) >= A066503(n).
a(n) = A007913(n) * A336642(n). - Antti Karttunen, Jul 28 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/2 - Pi^2/30 = 0.171013... . - Amiram Eldar, Mar 21 2024

A326142 Sum of all other divisors of n except its largest squarefree divisor: a(n) = sigma(n) - A007947(n).

Original entry on oeis.org

0, 1, 1, 5, 1, 6, 1, 13, 10, 8, 1, 22, 1, 10, 9, 29, 1, 33, 1, 32, 11, 14, 1, 54, 26, 16, 37, 42, 1, 42, 1, 61, 15, 20, 13, 85, 1, 22, 17, 80, 1, 54, 1, 62, 63, 26, 1, 118, 50, 83, 21, 72, 1, 114, 17, 106, 23, 32, 1, 138, 1, 34, 83, 125, 19, 78, 1, 92, 27, 74, 1, 189, 1, 40, 109, 102, 19, 90, 1, 176, 118, 44, 1, 182, 23, 46, 33
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; a[n_] := DivisorSigma[1, n] - rad[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A326142(n) = (sigma(n)-A007947(n));

Formula

a(n) = A000203(n) - A007947(n).
a(n) = n + A326143(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 - A065463 = 0.940491... . - Amiram Eldar, Dec 05 2023

A336645 a(n) = n - A326129(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 8, 8, 1, 11, 1, 10, 9, 15, 1, 17, 1, 19, 11, 14, 1, 18, 24, 16, 25, 7, 1, 18, 1, 31, 15, 20, 13, 35, 1, 22, 17, 30, 1, 30, 1, 43, 41, 26, 1, 47, 48, 49, 21, 49, 1, 42, 17, 54, 23, 32, 1, 57, 1, 34, 61, 63, 19, 54, 1, 67, 27, 66, 1, 71, 1, 40, 73, 73, 19, 66, 1, 79, 80, 44, 1, 77, 23, 46, 33, 86, 1, 88, 21
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2020

Keywords

Comments

It seems that A000396 gives all such n for which a(n) = A007913(n).

Crossrefs

Programs

Formula

a(n) = n - A326129(n) = n - gcd(A326127(n), A326128(n)).

A336641 Numbers k such that A007913(k) divides sigma(k) and A008833(k)-1 either divides A326127(k) (= sigma(k)-core(k)-k), or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 150, 294, 384, 496, 1014, 1536, 3276, 3750, 3780, 6144, 8128, 14406, 20328, 24576, 32760, 93750, 98304, 171366, 306180, 393216, 705894, 1241460, 1572864, 2343750, 6291456, 16380000, 24800580, 25165824, 28960854, 30387840, 33550336, 34588806, 58593750, 100663296, 165143160, 332226048, 402653184
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that A326128(k) = A326129(k) form a subsequence of this sequence. So far it is not known whether it contains any other terms apart from those of A000396. See comments in A326129.
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Cf. A000396, A002023 (subsequences).
Cf. also A336550 for a similar construction.

Programs

  • PARI
    isA336641(n) = { my(c=core(n), s=sigma(n), u=((n/c)-1)); (!(s%c) && (gcd(u,(s-c-n))==u)); };
Showing 1-6 of 6 results.