cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326143 a(n) = A326142(n) - n, where A326142 gives the sum of all other divisors of n except its largest squarefree divisor.

Original entry on oeis.org

-1, -1, -2, 1, -4, 0, -6, 5, 1, -2, -10, 10, -12, -4, -6, 13, -16, 15, -18, 12, -10, -8, -22, 30, 1, -10, 10, 14, -28, 12, -30, 29, -18, -14, -22, 49, -36, -16, -22, 40, -40, 12, -42, 18, 18, -20, -46, 70, 1, 33, -30, 20, -52, 60, -38, 50, -34, -26, -58, 78, -60, -28, 20, 61, -46, 12, -66, 24, -42, 4, -70, 117, -72, -34, 34, 26, -58, 12
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; a[n_] := DivisorSigma[1, n] - rad[n] - n; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A326143(n) = (sigma(n)-A007947(n)-n);

Formula

a(n) = A326142(n) - n = (A000203(n)-A007947(n)) - n = A001065(n) - A007947(n).
a(n) = A066503(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 - A065463 - 1 = -0.0595081... . - Amiram Eldar, Dec 05 2023

A326144 a(n) = gcd(A066503(n), A326143(n)) = gcd(n - A007947(n), sigma(n) - A007947(n) - n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 3, 18, 2, 10, 8, 22, 6, 1, 10, 2, 14, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 2, 6, 20, 46, 14, 1, 1, 30, 2, 52, 12, 38, 2, 34, 26, 58, 6, 60, 28, 2, 1, 46, 12, 66, 2, 42, 4, 70, 3, 72, 34, 2, 2, 58, 12, 78, 2, 1, 38, 82, 14, 62, 40, 54, 2, 88, 6, 70, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A066503(n), A326143(n)) = gcd(n-A007947(n), A000203(n)-A007947(n)-n).

A326126 Sum of all other divisors of n except the squarefree part of n: a(n) = sigma(n) - A007913(n).

Original entry on oeis.org

0, 1, 1, 6, 1, 6, 1, 13, 12, 8, 1, 25, 1, 10, 9, 30, 1, 37, 1, 37, 11, 14, 1, 54, 30, 16, 37, 49, 1, 42, 1, 61, 15, 20, 13, 90, 1, 22, 17, 80, 1, 54, 1, 73, 73, 26, 1, 121, 56, 91, 21, 85, 1, 114, 17, 106, 23, 32, 1, 153, 1, 34, 97, 126, 19, 78, 1, 109, 27, 74, 1, 193, 1, 40, 121, 121, 19, 90, 1, 181, 120, 44, 1, 203, 23, 46, 33, 158, 1, 224, 21
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^Mod[e, 2]; a[n_] := Module[{f = FactorInteger[n]}, Times @@ f1 @@@ f - Times @@ f2 @@@ f]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326126(n) = (sigma(n)-core(n));

Formula

a(n) = A000203(n) - A007913(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/20 = 0.4934802... . - Amiram Eldar, Mar 21 2024

A326145 Numbers n for which n - A007947(n) is equal to gcd(n - A007947(n), sigma(n) - A007947(n) - n).

Original entry on oeis.org

6, 28, 496, 936, 1638, 8128, 33550336
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Comments

Numbers n such that either A066503(n) and A326143(n) are both zero or A066503(n) is not zero and divides A326143(n).
Question: Are there any odd terms?
No other terms < 2^31.

Crossrefs

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA326145(n) = { my(b=A007947(n), t=n-b, u = (sigma(n)-b)-n); (gcd(t,u)==t); };
    \\ Or alternatively as:
    isA326145(n) = { my(t=A326143(n), u=A066503(n)); ((!u && !t)||(u && !(t%u))); };

A338790 a(n) = rad(n)^2 - sigma(n), where rad(n) is the squarefree kernel of n (A007947) and sigma(n) is the sum of divisors of n (A000203).

Original entry on oeis.org

0, 1, 5, -3, 19, 24, 41, -11, -4, 82, 109, 8, 155, 172, 201, -27, 271, -3, 341, 58, 409, 448, 505, -24, -6, 634, -31, 140, 811, 828, 929, -59, 1041, 1102, 1177, -55, 1331, 1384, 1465, 10, 1639, 1668, 1805, 400, 147, 2044, 2161, -88, -8, 7, 2529, 578, 2755, -84, 2953
Offset: 1

Views

Author

Michel Marcus, Nov 09 2020

Keywords

Comments

It is conjectured that only 1 and 1782 satisfy a(x) = 0.

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, B11.

Crossrefs

Programs

  • Maple
    a:= n-> mul(i[1], i=ifactors(n)[2])^2-numtheory[sigma](n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Nov 09 2020
  • PARI
    a(n) = my(f=factor(n)); factorback(f[, 1])^2 - sigma(f);

Formula

a(n) = A007947(n)^2 - A000203(n).
a(n) = A078615(n) - A000203(n).
Showing 1-5 of 5 results.