cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A326144 a(n) = gcd(A066503(n), A326143(n)) = gcd(n - A007947(n), sigma(n) - A007947(n) - n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 3, 18, 2, 10, 8, 22, 6, 1, 10, 2, 14, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 2, 6, 20, 46, 14, 1, 1, 30, 2, 52, 12, 38, 2, 34, 26, 58, 6, 60, 28, 2, 1, 46, 12, 66, 2, 42, 4, 70, 3, 72, 34, 2, 2, 58, 12, 78, 2, 1, 38, 82, 14, 62, 40, 54, 2, 88, 6, 70, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A066503(n), A326143(n)) = gcd(n-A007947(n), A000203(n)-A007947(n)-n).

A336550 Numbers k such that A007947(k) divides sigma(k) and A003557(k)-1 either divides A326143(k) [= A001065(k) - A007947(k)], or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 234, 384, 496, 936, 1536, 1638, 6144, 8128, 24576, 42588, 98304, 393216, 1089270, 1572864, 6291456, 25165824, 33550336, 100663296, 115048440, 402653184, 1185125760, 1610612736
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that gcd(sigma(k)-A007947(k), A007947(k)) == A007947(k) are those in A175200. These are equal to k such that gcd(A326143(k), A007947(k)) = gcd(sigma(k)-A007947(k)-k, A007947(k)) are equal to A007947(k).
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Intersection of A175200 and A336552.
Cf. A000396, A002023, A326145 (subsequences).
Cf. also A336641 for a similar construction.

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA336550(n) = { my(r=A007947(n), s=sigma(n), u=((n/r)-1)); (!(s%r) && (gcd(u,(s-r-n))==u)); };

A336552 Numbers k such that A003557(k)-1 either divides A326143(k) [= A001065(k) - A007947(k)], or both are zero. Numbers k such that gcd(A336551(k), A326143(k)) is equal to A336551(k).

Original entry on oeis.org

4, 6, 12, 20, 24, 28, 44, 45, 48, 52, 60, 63, 68, 76, 84, 90, 92, 96, 99, 116, 117, 120, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 164, 168, 171, 172, 188, 192, 198, 204, 207, 212, 220, 228, 234, 236, 244, 260, 261, 264, 268, 272, 276, 279, 284, 292, 294, 306, 308, 312, 315, 316, 325, 332, 333, 340, 342, 348, 350
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that either A336551(k) and A326143(k) are both zero (in which case k is squarefree), or A336551(k) divides A326143(k) (in which case k is not squarefree).

Crossrefs

Cf. A007947, A326143, A336550, A336551, A336553 (odd terms).

Programs

A336553 Odd numbers k such that gcd(A336551(k), A326143(k)) is equal to A336551(k).

Original entry on oeis.org

45, 63, 99, 117, 147, 153, 171, 207, 261, 279, 315, 325, 333, 369, 387, 423, 425, 477, 495, 531, 549, 585, 603, 639, 657, 693, 711, 725, 735, 747, 765, 801, 819, 847, 855, 873, 909, 925, 927, 963, 981, 1017, 1025, 1035, 1071, 1125, 1143, 1179, 1197, 1233, 1251, 1287, 1305, 1325, 1341, 1359, 1395, 1413, 1449, 1467, 1503
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Is the intersection with A336554 empty?

Crossrefs

Odd terms in A336552.
Cf. A336554.

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A326143(n) = (sigma(n)-A007947(n)-n);
    A336551(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); (factorback(f)-1); };
    isA336553(n) = if(!(n%2),0, my(u=A336551(n)); (u==gcd(u,A326143(n))));

A033879 Deficiency of n, or 2n - (sum of divisors of n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 10, 8, 22, -12, 19, 10, 14, 0, 28, -12, 30, 1, 18, 14, 22, -19, 36, 16, 22, -10, 40, -12, 42, 4, 12, 20, 46, -28, 41, 7, 30, 6, 52, -12, 38, -8, 34, 26, 58, -48, 60, 28, 22, 1, 46, -12, 66, 10, 42, -4, 70, -51
Offset: 1

Views

Author

Keywords

Comments

Records for the sequence of the absolute values are in A075728 and the indices of these records in A074918. - R. J. Mathar, Mar 02 2007
a(n) = 1 iff n is a power of 2. a(n) = n - 1 iff n is prime. - Omar E. Pol, Jan 30 2014
If a(n) = 1 then n is called a least deficient number or an almost perfect number. All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2. See A000079. - Jianing Song, Oct 13 2019
It is not known whether there are any -1's in this sequence. See comment in A033880. - Antti Karttunen, Feb 02 2020

Examples

			For n = 10 the divisors of 10 are 1, 2, 5, 10, so the deficiency of 10 is 10 minus the sum of its proper divisors or simply 10 - 5 - 2 - 1 = 2. - _Omar E. Pol_, Dec 27 2013
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Cf. A000396 (positions of zeros), A005100 (of positive terms), A005101 (of negative terms).
Cf. A141545 (positions of a(n) = -12).
For this sequence applied to various permutations of natural numbers and some other sequences, see A323174, A323244, A324055, A324185, A324546, A324574, A324575, A324654, A325379.

Programs

Formula

a(n) = -A033880(n).
a(n) = A005843(n) - A000203(n). - Omar E. Pol, Dec 14 2008
a(n) = n - A001065(n). - Omar E. Pol, Dec 27 2013
G.f.: 2*x/(1 - x)^2 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 24 2017
a(n) = A286385(n) - A252748(n). - Antti Karttunen, May 13 2017
From Antti Karttunen, Dec 29 2017: (Start)
a(n) = Sum_{d|n} A083254(d).
a(n) = Sum_{d|n} A008683(n/d)*A296075(d).
a(n) = A065620(A295881(n)) = A117966(A295882(n)).
a(n) = A294898(n) + A000120(n).
(End)
From Antti Karttunen, Jun 03 2019: (Start)
Sequence can be represented in arbitrarily many ways as a difference of the form (n - f(n)) - (g(n) - n), where f and g are any two sequences whose sum f(n)+g(n) = sigma(n). Here are few examples:
a(n) = A325314(n) - A325313(n) = A325814(n) - A034460(n) = A325978(n) - A325977(n).
a(n) = A325976(n) - A325826(n) = A325959(n) - A325969(n) = A003958(n) - A324044(n).
a(n) = A326049(n) - A326050(n) = A326055(n) - A326054(n) = A326044(n) - A326045(n).
a(n) = A326058(n) - A326059(n) = A326068(n) - A326067(n).
a(n) = A326128(n) - A326127(n) = A066503(n) - A326143(n).
a(n) = A318878(n) - A318879(n).
a(A228058(n)) = A325379(n). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - Pi^2/12 = 0.177532... . - Amiram Eldar, Dec 07 2023

Extensions

Definition corrected by N. J. A. Sloane, Jul 04 2005

A326127 a(n) = A326126(n) - n, where A326126 gives the sum of all other divisors of n except the squarefree part of n.

Original entry on oeis.org

-1, -1, -2, 2, -4, 0, -6, 5, 3, -2, -10, 13, -12, -4, -6, 14, -16, 19, -18, 17, -10, -8, -22, 30, 5, -10, 10, 21, -28, 12, -30, 29, -18, -14, -22, 54, -36, -16, -22, 40, -40, 12, -42, 29, 28, -20, -46, 73, 7, 41, -30, 33, -52, 60, -38, 50, -34, -26, -58, 93, -60, -28, 34, 62, -46, 12, -66, 41, -42, 4, -70, 121, -72, -34, 46, 45, -58, 12
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^Mod[e, 2]; a[n_] := Module[{f = FactorInteger[n]}, Times @@ f1 @@@ f - Times @@ f2 @@@ f - n]; a[1] = -1; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326127(n) = (sigma(n)-core(n)-n);

Formula

a(n) = A000203(n) - A007913(n) - n = A001065(n) - A007913(n).
a(n) = A326128(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/20 - 1/2 = -0.00651977... . - Amiram Eldar, Mar 21 2024

A326142 Sum of all other divisors of n except its largest squarefree divisor: a(n) = sigma(n) - A007947(n).

Original entry on oeis.org

0, 1, 1, 5, 1, 6, 1, 13, 10, 8, 1, 22, 1, 10, 9, 29, 1, 33, 1, 32, 11, 14, 1, 54, 26, 16, 37, 42, 1, 42, 1, 61, 15, 20, 13, 85, 1, 22, 17, 80, 1, 54, 1, 62, 63, 26, 1, 118, 50, 83, 21, 72, 1, 114, 17, 106, 23, 32, 1, 138, 1, 34, 83, 125, 19, 78, 1, 92, 27, 74, 1, 189, 1, 40, 109, 102, 19, 90, 1, 176, 118, 44, 1, 182, 23, 46, 33
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; a[n_] := DivisorSigma[1, n] - rad[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A326142(n) = (sigma(n)-A007947(n));

Formula

a(n) = A000203(n) - A007947(n).
a(n) = n + A326143(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 - A065463 = 0.940491... . - Amiram Eldar, Dec 05 2023

A326145 Numbers n for which n - A007947(n) is equal to gcd(n - A007947(n), sigma(n) - A007947(n) - n).

Original entry on oeis.org

6, 28, 496, 936, 1638, 8128, 33550336
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Comments

Numbers n such that either A066503(n) and A326143(n) are both zero or A066503(n) is not zero and divides A326143(n).
Question: Are there any odd terms?
No other terms < 2^31.

Crossrefs

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA326145(n) = { my(b=A007947(n), t=n-b, u = (sigma(n)-b)-n); (gcd(t,u)==t); };
    \\ Or alternatively as:
    isA326145(n) = { my(t=A326143(n), u=A066503(n)); ((!u && !t)||(u && !(t%u))); };

A336646 a(n) = n - A326144(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 8, 8, 1, 10, 1, 10, 9, 15, 1, 15, 1, 18, 11, 14, 1, 18, 24, 16, 25, 14, 1, 18, 1, 31, 15, 20, 13, 35, 1, 22, 17, 30, 1, 30, 1, 42, 39, 26, 1, 34, 48, 49, 21, 50, 1, 42, 17, 54, 23, 32, 1, 54, 1, 34, 61, 63, 19, 54, 1, 66, 27, 66, 1, 69, 1, 40, 73, 74, 19, 66, 1, 78, 80, 44, 1, 70, 23, 46, 33, 86
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Crossrefs

Cf. A326145 (positions where coincides with A007947).
Cf. A336555 (positions where differs from A336647).
Cf. also A336645, A336647.

Programs

Showing 1-9 of 9 results.