cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A336555 Numbers k for which A326144(k) <> A336566(k).

Original entry on oeis.org

45, 63, 75, 99, 117, 126, 144, 147, 150, 153, 171, 175, 198, 207, 216, 242, 245, 250, 252, 261, 275, 279, 294, 300, 315, 325, 333, 342, 350, 363, 369, 387, 396, 405, 414, 423, 425, 475, 477, 495, 504, 507, 525, 531, 539, 549, 550, 558, 567, 575, 585, 588, 600, 603, 605, 612, 630, 637, 639, 657, 675, 684, 693, 700, 711
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Question: Is A228058 a subsequence of this one?

Crossrefs

Programs

A336646 a(n) = n - A326144(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 8, 8, 1, 10, 1, 10, 9, 15, 1, 15, 1, 18, 11, 14, 1, 18, 24, 16, 25, 14, 1, 18, 1, 31, 15, 20, 13, 35, 1, 22, 17, 30, 1, 30, 1, 42, 39, 26, 1, 34, 48, 49, 21, 50, 1, 42, 17, 54, 23, 32, 1, 54, 1, 34, 61, 63, 19, 54, 1, 66, 27, 66, 1, 69, 1, 40, 73, 74, 19, 66, 1, 78, 80, 44, 1, 70, 23, 46, 33, 86
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Crossrefs

Cf. A326145 (positions where coincides with A007947).
Cf. A336555 (positions where differs from A336647).
Cf. also A336645, A336647.

Programs

A326046 a(n) = gcd(n-A326039(n), A326040(n)-n).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 4, 12, 2, 1, 1, 8, 1, 3, 1, 5, 2, 1, 4, 1, 5, 1, 24, 28, 6, 15, 1, 1, 1, 1, 1, 36, 2, 1, 1, 40, 2, 3, 4, 4, 10, 1, 4, 1, 7, 15, 3, 4, 2, 19, 4, 1, 1, 1, 8, 60, 2, 1, 1, 1, 6, 3, 1, 1, 2, 35, 1, 72, 1, 1, 12, 1, 2, 3, 1, 1, 1, 1, 4, 1, 2, 1, 4, 8, 27, 5, 8, 29, 2, 7, 60, 48, 1, 1, 1, 100, 6, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326044(n), A326045(n)) = gcd(n-A326039(n), A326040(n)-n).

A326056 a(n) = gcd(sigma(n)-A008833(n)-n, n-A008833(n)), where sigma is the sum of divisors of n, and A008833 is the largest square dividing n.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 6, 1, 5, 1, 10, 4, 12, 1, 2, 1, 16, 3, 18, 2, 10, 1, 22, 4, 19, 5, 2, 24, 28, 1, 30, 1, 2, 1, 2, 19, 36, 1, 2, 2, 40, 1, 42, 4, 12, 5, 46, 4, 41, 1, 10, 6, 52, 3, 2, 4, 2, 1, 58, 8, 60, 1, 2, 1, 2, 1, 66, 2, 2, 1, 70, 3, 72, 1, 2, 12, 2, 1, 78, 2, 41, 1, 82, 8, 2, 5, 2, 4, 88, 27, 10, 8, 2, 1, 2, 20, 96, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Comments

Composite numbers n such that a(n) = A326055(n) start as: 6, 28, 336, 496, 792, 8128, 31968, 3606912, ...
Nonsquare odd numbers n such that a(n) = abs(A326054(n)) start as: 21, 153, 301, 697, 1333, 1909, 1917, 2041, 3901, 4753, 24601, 24957, 26977, 29161, 29637, 56953, 67077, 96361, ...

Crossrefs

Programs

Formula

a(n) = gcd(A326054(n), A326055(n)) = gcd((A000203(n)-A008833(n))-n, n-A008833(n)).

A326129 a(n) = gcd(A326127(n), A326128(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 1, 12, 4, 6, 1, 16, 1, 18, 1, 10, 8, 22, 6, 1, 10, 2, 21, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 1, 4, 20, 46, 1, 1, 1, 30, 3, 52, 12, 38, 2, 34, 26, 58, 3, 60, 28, 2, 1, 46, 12, 66, 1, 42, 4, 70, 1, 72, 34, 2, 3, 58, 12, 78, 1, 1, 38, 82, 7, 62, 40, 54, 2, 88, 2, 70, 1, 58, 44, 70, 30
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Comments

Question: Are there any other numbers than those in A000396 that satisfy a(k) = A326128(k)?
See also comments in A336641, where all such k should reside. - Antti Karttunen, Jul 29 2020

Crossrefs

Programs

Formula

a(n) = n - A336645(n). - Antti Karttunen, Jul 29 2020

A326130 a(n) = gcd(A000120(n), A294898(n)) = gcd(A000120(n), sigma(n)-A005187(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 4, 5, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 3, 2, 1, 4, 4, 1, 2, 1, 1, 2, 3, 4, 4, 1, 1, 2, 2, 1, 4, 5, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 4, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 4, 2, 5, 4, 1, 1, 2, 2, 3, 1, 2, 1, 4, 4, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A000120(n), A294898(n)) = gcd(A000120(n), A000203(n)-A005187(n)).

A326143 a(n) = A326142(n) - n, where A326142 gives the sum of all other divisors of n except its largest squarefree divisor.

Original entry on oeis.org

-1, -1, -2, 1, -4, 0, -6, 5, 1, -2, -10, 10, -12, -4, -6, 13, -16, 15, -18, 12, -10, -8, -22, 30, 1, -10, 10, 14, -28, 12, -30, 29, -18, -14, -22, 49, -36, -16, -22, 40, -40, 12, -42, 18, 18, -20, -46, 70, 1, 33, -30, 20, -52, 60, -38, 50, -34, -26, -58, 78, -60, -28, 20, 61, -46, 12, -66, 24, -42, 4, -70, 117, -72, -34, 34, 26, -58, 12
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; a[n_] := DivisorSigma[1, n] - rad[n] - n; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A326143(n) = (sigma(n)-A007947(n)-n);

Formula

a(n) = A326142(n) - n = (A000203(n)-A007947(n)) - n = A001065(n) - A007947(n).
a(n) = A066503(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 - A065463 - 1 = -0.0595081... . - Amiram Eldar, Dec 05 2023

A326140 a(n) = gcd(A318878(n), A318879(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 2, 12, 2, 6, 1, 16, 1, 18, 2, 10, 2, 22, 2, 19, 2, 14, 6, 28, 6, 30, 1, 18, 2, 22, 1, 36, 2, 22, 2, 40, 2, 42, 2, 12, 2, 46, 2, 41, 1, 30, 6, 52, 2, 38, 2, 34, 2, 58, 6, 60, 2, 22, 1, 46, 6, 66, 2, 42, 2, 70, 1, 72, 2, 26, 6, 58, 2, 78, 2, 41, 2, 82, 2, 62, 2, 54, 2, 88, 6, 70, 2, 58, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A326140(n) = { my(t=0, u=0); fordiv(n,d, d -= 2*eulerphi(d); if(d<0, t -= d, u += d)); gcd(t,u); };
    
  • PARI
    A318878(n) = sumdiv(n,d,d=(2*eulerphi(d))-d; (d>0)*d);
    A318879(n) = sumdiv(n,d,d=d-(2*eulerphi(d)); (d>0)*d);
    A326140(n) = gcd(A318878(n), A318879(n));

A336566 a(n) = gcd(A336563(n), A336564(n)) = gcd(A057723(n)-n, n-A308135(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 3, 18, 2, 10, 8, 22, 6, 1, 10, 2, 14, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 2, 3, 20, 46, 14, 1, 1, 30, 2, 52, 12, 38, 2, 34, 26, 58, 6, 60, 28, 1, 1, 46, 12, 66, 2, 42, 4, 70, 3, 72, 34, 1, 2, 58, 12, 78, 2, 1, 38, 82, 14, 62, 40, 54, 2, 88
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2020

Keywords

Crossrefs

Differs from A326144 at the positions given by A336555, for the first time at n=45, where a(45) = 3, while A326144(45) = 6.

Programs

Formula

a(n) = gcd(A336563(n), A336564(n)) = gcd(A057723(n)-n, n-A308135(n));

A326145 Numbers n for which n - A007947(n) is equal to gcd(n - A007947(n), sigma(n) - A007947(n) - n).

Original entry on oeis.org

6, 28, 496, 936, 1638, 8128, 33550336
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Comments

Numbers n such that either A066503(n) and A326143(n) are both zero or A066503(n) is not zero and divides A326143(n).
Question: Are there any odd terms?
No other terms < 2^31.

Crossrefs

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA326145(n) = { my(b=A007947(n), t=n-b, u = (sigma(n)-b)-n); (gcd(t,u)==t); };
    \\ Or alternatively as:
    isA326145(n) = { my(t=A326143(n), u=A066503(n)); ((!u && !t)||(u && !(t%u))); };
Showing 1-10 of 12 results. Next