cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A336645 a(n) = n - A326129(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 8, 8, 1, 11, 1, 10, 9, 15, 1, 17, 1, 19, 11, 14, 1, 18, 24, 16, 25, 7, 1, 18, 1, 31, 15, 20, 13, 35, 1, 22, 17, 30, 1, 30, 1, 43, 41, 26, 1, 47, 48, 49, 21, 49, 1, 42, 17, 54, 23, 32, 1, 57, 1, 34, 61, 63, 19, 54, 1, 67, 27, 66, 1, 71, 1, 40, 73, 73, 19, 66, 1, 79, 80, 44, 1, 77, 23, 46, 33, 86, 1, 88, 21
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2020

Keywords

Comments

It seems that A000396 gives all such n for which a(n) = A007913(n).

Crossrefs

Programs

Formula

a(n) = n - A326129(n) = n - gcd(A326127(n), A326128(n)).

A326046 a(n) = gcd(n-A326039(n), A326040(n)-n).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 4, 12, 2, 1, 1, 8, 1, 3, 1, 5, 2, 1, 4, 1, 5, 1, 24, 28, 6, 15, 1, 1, 1, 1, 1, 36, 2, 1, 1, 40, 2, 3, 4, 4, 10, 1, 4, 1, 7, 15, 3, 4, 2, 19, 4, 1, 1, 1, 8, 60, 2, 1, 1, 1, 6, 3, 1, 1, 2, 35, 1, 72, 1, 1, 12, 1, 2, 3, 1, 1, 1, 1, 4, 1, 2, 1, 4, 8, 27, 5, 8, 29, 2, 7, 60, 48, 1, 1, 1, 100, 6, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326044(n), A326045(n)) = gcd(n-A326039(n), A326040(n)-n).

A326056 a(n) = gcd(sigma(n)-A008833(n)-n, n-A008833(n)), where sigma is the sum of divisors of n, and A008833 is the largest square dividing n.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 6, 1, 5, 1, 10, 4, 12, 1, 2, 1, 16, 3, 18, 2, 10, 1, 22, 4, 19, 5, 2, 24, 28, 1, 30, 1, 2, 1, 2, 19, 36, 1, 2, 2, 40, 1, 42, 4, 12, 5, 46, 4, 41, 1, 10, 6, 52, 3, 2, 4, 2, 1, 58, 8, 60, 1, 2, 1, 2, 1, 66, 2, 2, 1, 70, 3, 72, 1, 2, 12, 2, 1, 78, 2, 41, 1, 82, 8, 2, 5, 2, 4, 88, 27, 10, 8, 2, 1, 2, 20, 96, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Comments

Composite numbers n such that a(n) = A326055(n) start as: 6, 28, 336, 496, 792, 8128, 31968, 3606912, ...
Nonsquare odd numbers n such that a(n) = abs(A326054(n)) start as: 21, 153, 301, 697, 1333, 1909, 1917, 2041, 3901, 4753, 24601, 24957, 26977, 29161, 29637, 56953, 67077, 96361, ...

Crossrefs

Programs

Formula

a(n) = gcd(A326054(n), A326055(n)) = gcd((A000203(n)-A008833(n))-n, n-A008833(n)).

A326144 a(n) = gcd(A066503(n), A326143(n)) = gcd(n - A007947(n), sigma(n) - A007947(n) - n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 3, 18, 2, 10, 8, 22, 6, 1, 10, 2, 14, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 2, 6, 20, 46, 14, 1, 1, 30, 2, 52, 12, 38, 2, 34, 26, 58, 6, 60, 28, 2, 1, 46, 12, 66, 2, 42, 4, 70, 3, 72, 34, 2, 2, 58, 12, 78, 2, 1, 38, 82, 14, 62, 40, 54, 2, 88, 6, 70, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A066503(n), A326143(n)) = gcd(n-A007947(n), A000203(n)-A007947(n)-n).

A326130 a(n) = gcd(A000120(n), A294898(n)) = gcd(A000120(n), sigma(n)-A005187(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 4, 5, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 3, 2, 1, 4, 4, 1, 2, 1, 1, 2, 3, 4, 4, 1, 1, 2, 2, 1, 4, 5, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 4, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 4, 2, 5, 4, 1, 1, 2, 2, 3, 1, 2, 1, 4, 4, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A000120(n), A294898(n)) = gcd(A000120(n), A000203(n)-A005187(n)).

A326140 a(n) = gcd(A318878(n), A318879(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 2, 12, 2, 6, 1, 16, 1, 18, 2, 10, 2, 22, 2, 19, 2, 14, 6, 28, 6, 30, 1, 18, 2, 22, 1, 36, 2, 22, 2, 40, 2, 42, 2, 12, 2, 46, 2, 41, 1, 30, 6, 52, 2, 38, 2, 34, 2, 58, 6, 60, 2, 22, 1, 46, 6, 66, 2, 42, 2, 70, 1, 72, 2, 26, 6, 58, 2, 78, 2, 41, 2, 82, 2, 62, 2, 54, 2, 88, 6, 70, 2, 58, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A326140(n) = { my(t=0, u=0); fordiv(n,d, d -= 2*eulerphi(d); if(d<0, t -= d, u += d)); gcd(t,u); };
    
  • PARI
    A318878(n) = sumdiv(n,d,d=(2*eulerphi(d))-d; (d>0)*d);
    A318879(n) = sumdiv(n,d,d=d-(2*eulerphi(d)); (d>0)*d);
    A326140(n) = gcd(A318878(n), A318879(n));

A326127 a(n) = A326126(n) - n, where A326126 gives the sum of all other divisors of n except the squarefree part of n.

Original entry on oeis.org

-1, -1, -2, 2, -4, 0, -6, 5, 3, -2, -10, 13, -12, -4, -6, 14, -16, 19, -18, 17, -10, -8, -22, 30, 5, -10, 10, 21, -28, 12, -30, 29, -18, -14, -22, 54, -36, -16, -22, 40, -40, 12, -42, 29, 28, -20, -46, 73, 7, 41, -30, 33, -52, 60, -38, 50, -34, -26, -58, 93, -60, -28, 34, 62, -46, 12, -66, 41, -42, 4, -70, 121, -72, -34, 46, 45, -58, 12
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^Mod[e, 2]; a[n_] := Module[{f = FactorInteger[n]}, Times @@ f1 @@@ f - Times @@ f2 @@@ f - n]; a[1] = -1; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326127(n) = (sigma(n)-core(n)-n);

Formula

a(n) = A000203(n) - A007913(n) - n = A001065(n) - A007913(n).
a(n) = A326128(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/20 - 1/2 = -0.00651977... . - Amiram Eldar, Mar 21 2024

A326126 Sum of all other divisors of n except the squarefree part of n: a(n) = sigma(n) - A007913(n).

Original entry on oeis.org

0, 1, 1, 6, 1, 6, 1, 13, 12, 8, 1, 25, 1, 10, 9, 30, 1, 37, 1, 37, 11, 14, 1, 54, 30, 16, 37, 49, 1, 42, 1, 61, 15, 20, 13, 90, 1, 22, 17, 80, 1, 54, 1, 73, 73, 26, 1, 121, 56, 91, 21, 85, 1, 114, 17, 106, 23, 32, 1, 153, 1, 34, 97, 126, 19, 78, 1, 109, 27, 74, 1, 193, 1, 40, 121, 121, 19, 90, 1, 181, 120, 44, 1, 203, 23, 46, 33, 158, 1, 224, 21
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^Mod[e, 2]; a[n_] := Module[{f = FactorInteger[n]}, Times @@ f1 @@@ f - Times @@ f2 @@@ f]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326126(n) = (sigma(n)-core(n));

Formula

a(n) = A000203(n) - A007913(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/20 = 0.4934802... . - Amiram Eldar, Mar 21 2024

A326128 a(n) = n - A007913(n), where A007913 gives the squarefree part of n.

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 6, 8, 0, 0, 9, 0, 0, 0, 15, 0, 16, 0, 15, 0, 0, 0, 18, 24, 0, 24, 21, 0, 0, 0, 30, 0, 0, 0, 35, 0, 0, 0, 30, 0, 0, 0, 33, 40, 0, 0, 45, 48, 48, 0, 39, 0, 48, 0, 42, 0, 0, 0, 45, 0, 0, 56, 63, 0, 0, 0, 51, 0, 0, 0, 70, 0, 0, 72, 57, 0, 0, 0, 75, 80, 0, 0, 63, 0, 0, 0, 66, 0, 80, 0, 69, 0, 0, 0, 90, 0, 96, 88, 99, 0, 0, 0, 78, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; a[n_] := n - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326128(n) = (n-core(n));

Formula

a(n) = n - A007913(n).
a(n) = A326127(n) + A033879(n).
a(n) >= A066503(n).
a(n) = A007913(n) * A336642(n). - Antti Karttunen, Jul 28 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/2 - Pi^2/30 = 0.171013... . - Amiram Eldar, Mar 21 2024

A326147 a(n) = gcd(n-A020639(n), sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n, and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 1, 18, 2, 2, 4, 22, 2, 1, 2, 2, 26, 28, 4, 30, 1, 6, 2, 2, 1, 36, 4, 2, 2, 40, 4, 42, 2, 6, 4, 46, 2, 1, 1, 6, 2, 52, 4, 2, 2, 2, 2, 58, 2, 60, 4, 2, 1, 2, 4, 66, 2, 6, 4, 70, 1, 72, 2, 2, 2, 2, 4, 78, 26, 1, 2, 82, 2, 2, 4, 6, 2, 88, 2, 14, 2, 2, 4, 10, 2, 96, 1, 6, 1, 100, 4, 102, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n-A020639(n), A000203(n)-A020639(n)-n).
For n > 1, a(n) = gcd(A046666(n), A326146(n)).
Showing 1-10 of 12 results. Next