cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A326129 a(n) = gcd(A326127(n), A326128(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 1, 12, 4, 6, 1, 16, 1, 18, 1, 10, 8, 22, 6, 1, 10, 2, 21, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 1, 4, 20, 46, 1, 1, 1, 30, 3, 52, 12, 38, 2, 34, 26, 58, 3, 60, 28, 2, 1, 46, 12, 66, 1, 42, 4, 70, 1, 72, 34, 2, 3, 58, 12, 78, 1, 1, 38, 82, 7, 62, 40, 54, 2, 88, 2, 70, 1, 58, 44, 70, 30
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Comments

Question: Are there any other numbers than those in A000396 that satisfy a(k) = A326128(k)?
See also comments in A336641, where all such k should reside. - Antti Karttunen, Jul 29 2020

Crossrefs

Programs

Formula

a(n) = n - A336645(n). - Antti Karttunen, Jul 29 2020

A033879 Deficiency of n, or 2n - (sum of divisors of n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 10, 8, 22, -12, 19, 10, 14, 0, 28, -12, 30, 1, 18, 14, 22, -19, 36, 16, 22, -10, 40, -12, 42, 4, 12, 20, 46, -28, 41, 7, 30, 6, 52, -12, 38, -8, 34, 26, 58, -48, 60, 28, 22, 1, 46, -12, 66, 10, 42, -4, 70, -51
Offset: 1

Views

Author

Keywords

Comments

Records for the sequence of the absolute values are in A075728 and the indices of these records in A074918. - R. J. Mathar, Mar 02 2007
a(n) = 1 iff n is a power of 2. a(n) = n - 1 iff n is prime. - Omar E. Pol, Jan 30 2014
If a(n) = 1 then n is called a least deficient number or an almost perfect number. All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2. See A000079. - Jianing Song, Oct 13 2019
It is not known whether there are any -1's in this sequence. See comment in A033880. - Antti Karttunen, Feb 02 2020

Examples

			For n = 10 the divisors of 10 are 1, 2, 5, 10, so the deficiency of 10 is 10 minus the sum of its proper divisors or simply 10 - 5 - 2 - 1 = 2. - _Omar E. Pol_, Dec 27 2013
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Cf. A000396 (positions of zeros), A005100 (of positive terms), A005101 (of negative terms).
Cf. A083254 (Möbius transform), A228058, A296074, A296075, A323910, A325636, A325826, A325970, A325976.
Cf. A141545 (positions of a(n) = -12).
For this sequence applied to various permutations of natural numbers and some other sequences, see A323174, A323244, A324055, A324185, A324546, A324574, A324575, A324654, A325379.

Programs

Formula

a(n) = -A033880(n).
a(n) = A005843(n) - A000203(n). - Omar E. Pol, Dec 14 2008
a(n) = n - A001065(n). - Omar E. Pol, Dec 27 2013
G.f.: 2*x/(1 - x)^2 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 24 2017
a(n) = A286385(n) - A252748(n). - Antti Karttunen, May 13 2017
From Antti Karttunen, Dec 29 2017: (Start)
a(n) = Sum_{d|n} A083254(d).
a(n) = Sum_{d|n} A008683(n/d)*A296075(d).
a(n) = A065620(A295881(n)) = A117966(A295882(n)).
a(n) = A294898(n) + A000120(n).
(End)
From Antti Karttunen, Jun 03 2019: (Start)
Sequence can be represented in arbitrarily many ways as a difference of the form (n - f(n)) - (g(n) - n), where f and g are any two sequences whose sum f(n)+g(n) = sigma(n). Here are few examples:
a(n) = A325314(n) - A325313(n) = A325814(n) - A034460(n) = A325978(n) - A325977(n).
a(n) = A325976(n) - A325826(n) = A325959(n) - A325969(n) = A003958(n) - A324044(n).
a(n) = A326049(n) - A326050(n) = A326055(n) - A326054(n) = A326044(n) - A326045(n).
a(n) = A326058(n) - A326059(n) = A326068(n) - A326067(n).
a(n) = A326128(n) - A326127(n) = A066503(n) - A326143(n).
a(n) = A318878(n) - A318879(n).
a(A228058(n)) = A325379(n). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - Pi^2/12 = 0.177532... . - Amiram Eldar, Dec 07 2023

Extensions

Definition corrected by N. J. A. Sloane, Jul 04 2005

A326127 a(n) = A326126(n) - n, where A326126 gives the sum of all other divisors of n except the squarefree part of n.

Original entry on oeis.org

-1, -1, -2, 2, -4, 0, -6, 5, 3, -2, -10, 13, -12, -4, -6, 14, -16, 19, -18, 17, -10, -8, -22, 30, 5, -10, 10, 21, -28, 12, -30, 29, -18, -14, -22, 54, -36, -16, -22, 40, -40, 12, -42, 29, 28, -20, -46, 73, 7, 41, -30, 33, -52, 60, -38, 50, -34, -26, -58, 93, -60, -28, 34, 62, -46, 12, -66, 41, -42, 4, -70, 121, -72, -34, 46, 45, -58, 12
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^Mod[e, 2]; a[n_] := Module[{f = FactorInteger[n]}, Times @@ f1 @@@ f - Times @@ f2 @@@ f - n]; a[1] = -1; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326127(n) = (sigma(n)-core(n)-n);

Formula

a(n) = A000203(n) - A007913(n) - n = A001065(n) - A007913(n).
a(n) = A326128(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/20 - 1/2 = -0.00651977... . - Amiram Eldar, Mar 21 2024

A326126 Sum of all other divisors of n except the squarefree part of n: a(n) = sigma(n) - A007913(n).

Original entry on oeis.org

0, 1, 1, 6, 1, 6, 1, 13, 12, 8, 1, 25, 1, 10, 9, 30, 1, 37, 1, 37, 11, 14, 1, 54, 30, 16, 37, 49, 1, 42, 1, 61, 15, 20, 13, 90, 1, 22, 17, 80, 1, 54, 1, 73, 73, 26, 1, 121, 56, 91, 21, 85, 1, 114, 17, 106, 23, 32, 1, 153, 1, 34, 97, 126, 19, 78, 1, 109, 27, 74, 1, 193, 1, 40, 121, 121, 19, 90, 1, 181, 120, 44, 1, 203, 23, 46, 33, 158, 1, 224, 21
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^Mod[e, 2]; a[n_] := Module[{f = FactorInteger[n]}, Times @@ f1 @@@ f - Times @@ f2 @@@ f]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326126(n) = (sigma(n)-core(n));

Formula

a(n) = A000203(n) - A007913(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/20 = 0.4934802... . - Amiram Eldar, Mar 21 2024

A336645 a(n) = n - A326129(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 8, 8, 1, 11, 1, 10, 9, 15, 1, 17, 1, 19, 11, 14, 1, 18, 24, 16, 25, 7, 1, 18, 1, 31, 15, 20, 13, 35, 1, 22, 17, 30, 1, 30, 1, 43, 41, 26, 1, 47, 48, 49, 21, 49, 1, 42, 17, 54, 23, 32, 1, 57, 1, 34, 61, 63, 19, 54, 1, 67, 27, 66, 1, 71, 1, 40, 73, 73, 19, 66, 1, 79, 80, 44, 1, 77, 23, 46, 33, 86, 1, 88, 21
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2020

Keywords

Comments

It seems that A000396 gives all such n for which a(n) = A007913(n).

Crossrefs

Programs

Formula

a(n) = n - A326129(n) = n - gcd(A326127(n), A326128(n)).

A336641 Numbers k such that A007913(k) divides sigma(k) and A008833(k)-1 either divides A326127(k) (= sigma(k)-core(k)-k), or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 150, 294, 384, 496, 1014, 1536, 3276, 3750, 3780, 6144, 8128, 14406, 20328, 24576, 32760, 93750, 98304, 171366, 306180, 393216, 705894, 1241460, 1572864, 2343750, 6291456, 16380000, 24800580, 25165824, 28960854, 30387840, 33550336, 34588806, 58593750, 100663296, 165143160, 332226048, 402653184
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that A326128(k) = A326129(k) form a subsequence of this sequence. So far it is not known whether it contains any other terms apart from those of A000396. See comments in A326129.
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Cf. A000396, A002023 (subsequences).
Cf. also A336550 for a similar construction.

Programs

  • PARI
    isA336641(n) = { my(c=core(n), s=sigma(n), u=((n/c)-1)); (!(s%c) && (gcd(u,(s-c-n))==u)); };
Showing 1-6 of 6 results.