cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336550 Numbers k such that A007947(k) divides sigma(k) and A003557(k)-1 either divides A326143(k) [= A001065(k) - A007947(k)], or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 234, 384, 496, 936, 1536, 1638, 6144, 8128, 24576, 42588, 98304, 393216, 1089270, 1572864, 6291456, 25165824, 33550336, 100663296, 115048440, 402653184, 1185125760, 1610612736
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that gcd(sigma(k)-A007947(k), A007947(k)) == A007947(k) are those in A175200. These are equal to k such that gcd(A326143(k), A007947(k)) = gcd(sigma(k)-A007947(k)-k, A007947(k)) are equal to A007947(k).
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Intersection of A175200 and A336552.
Cf. A000396, A002023, A326145 (subsequences).
Cf. also A336641 for a similar construction.

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA336550(n) = { my(r=A007947(n), s=sigma(n), u=((n/r)-1)); (!(s%r) && (gcd(u,(s-r-n))==u)); };

A336553 Odd numbers k such that gcd(A336551(k), A326143(k)) is equal to A336551(k).

Original entry on oeis.org

45, 63, 99, 117, 147, 153, 171, 207, 261, 279, 315, 325, 333, 369, 387, 423, 425, 477, 495, 531, 549, 585, 603, 639, 657, 693, 711, 725, 735, 747, 765, 801, 819, 847, 855, 873, 909, 925, 927, 963, 981, 1017, 1025, 1035, 1071, 1125, 1143, 1179, 1197, 1233, 1251, 1287, 1305, 1325, 1341, 1359, 1395, 1413, 1449, 1467, 1503
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Is the intersection with A336554 empty?

Crossrefs

Odd terms in A336552.
Cf. A336554.

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A326143(n) = (sigma(n)-A007947(n)-n);
    A336551(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); (factorback(f)-1); };
    isA336553(n) = if(!(n%2),0, my(u=A336551(n)); (u==gcd(u,A326143(n))));
Showing 1-2 of 2 results.