A292270 Sum of all partial fractions in the algorithm used for calculation of A002326(n).
1, 1, 4, 1, 13, 25, 36, 1, 38, 81, 12, 26, 124, 121, 196, 1, 103, 73, 324, 42, 224, 175, 91, 147, 232, 14, 676, 170, 303, 841, 900, 1, 264, 1089, 385, 364, 93, 301, 585, 563, 1093, 1681, 44, 355, 152, 118, 83, 484, 1254, 763, 2500, 1043, 156, 2809, 996, 564, 952, 931, 71, 387, 3325, 176, 3124, 1, 649, 4225, 554, 1081
Offset: 0
Keywords
Examples
Let n = 9. According to the comment, a(9) = 5 + 3 + 11 + 15 + 17 + 9 + 7 + 13 + 1 = 81.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10001
Crossrefs
Programs
-
PARI
A000265(n) = (n >> valuation(n, 2)); A006519(n) = 2^valuation(n, 2); A292270(n) = { my(x = n+n+1, z = ((1+x)/A006519(1+x)), m = A000265(1+x)); while(m!=1, z += ((x+m)/A006519(x+m)); m = A000265(x+m)); z; };
-
Scheme
(define (A292270 n) (let ((x (+ n n 1))) (let loop ((z (/ (+ 1 x) (A006519 (+ 1 x)))) (k 1)) (let ((m (A000265 (+ x k)))) (if (= 1 m) z (loop (+ z (/ (+ x m) (A006519 (+ x m)))) m))))))
Comments