cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A248515 Least number k such that 1 - k*sin(1/k) < 1/n^2.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 29
Offset: 1

Views

Author

Clark Kimberling, Oct 08 2014

Keywords

Comments

This sequences provides insight into the manner of convergence of n*sin(1/n). One may also consider: [1/(1 - n*sin(1/n))] = 6*n^2 = A033581(n) for n >= 1.
a(n+1) - a(n) is in {0,1} for n >= 1, so that the position sequences A138235 and A022840 partition the positive integers.
a(n) = A194986(n). - Clark Kimberling, Jan 15 2015

Examples

			Approximations:
n      1-k*sin(1/k)     1/n^2
1      0.158529         1
2      0.041148         0.25
3      0.018415         0.11111
4      0.010384         0.0625
5      0.006653         0.04
a(5) = 3 because 1 - 3*sin(1/3) < 1/25 < 1 - 2*sin(1/2).
		

Crossrefs

Programs

  • Magma
    [Ceiling(n/Sqrt(6)): n in [1..70]]; // Vincenzo Librandi, Jun 17 2015
  • Mathematica
    z = 120; p[k_] := p[k] = k*Sin[1/k]; N[Table[1 - p[n], {n, 1, z/5}]]
    f[n_] := f[n] = Select[Range[z], 1 - p[#] < 1/n^2 &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]        (* A248515 *)
    v = Flatten[Position[Differences[u], 0]]   (* A138235 *)
    w = Flatten[Position[Differences[u], 1]]   (* A022840 *)
    Table[Ceiling[n / Sqrt[6]], {n, 70}] (* Vincenzo Librandi, Jun 17 2015 *)

Formula

a(n) = ceiling (n/sqrt(6)) for n >= 1.

A249388 Put a [+] b = A(A(a) + A(b)), where A=A007913. The sequence lists consecutive row "sums" of triangle A248473, using [+].

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 94, 1, 1, 1, 2, 6, 2, 17, 2, 2, 1187, 6, 2, 1, 62, 2, 56883, 14, 3, 14471, 2, 14, 3018, 34, 6, 3, 29, 67, 19, 1, 38, 528846, 9758, 14, 18278015, 163506530, 767014, 7, 2, 2611563, 2081053770, 3, 2, 2, 53654, 94, 17175330570, 2, 1612685866
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a7913[n_]:=a7913[n]=Times@@(#[[1]]^Mod[#[[2]],2])&[Transpose[FactorInteger[n]]];
    ab[x_,y_]:=ab[x,y]=a7913[a7913[x]+a7913[y]];
    Map[Fold[ab,First[#],Rest[#]]&,Table[a7913[Binomial[a7913[m],a7913[k]]],{m,0,50},{k,0,m}]] (* Peter J. C. Moses, Oct 27 2014 *)

A248473 Triangle of numbers b(i,j) = A(binomial(A(i), A(j))), where A = A007913, with the convention that A(0)=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 0, 0, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 5, 6, 6, 1, 1, 7, 21, 35, 7, 21, 7, 1, 1, 2, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 10, 5, 30, 10, 7, 210, 30, 5, 10, 1, 1, 11, 55, 165, 11, 462, 462, 330, 55, 11, 11, 1
Offset: 0

Views

Author

Keywords

Comments

By definition, all terms are squarefree (A005117).

Examples

			For i=8, j=4, we have A(8)=2, A(4)=1, hence b(8,4) = A(binomial(2,1)) = 2.
Triangle begins
1
1   1
1   2   1
1   3   3   1
1   1   0   0   1
1   5  10  10   5   1
1   6  15   5   6   6   1
1   7  21  35   7  21   7   1
1   2   1   0   2   0   0   0   1
1   1   0   0   1   0   0   0   0   1
1  10   5  30  10   7 210  30   5  10  1
..........................................
		

Crossrefs

Programs

  • Mathematica
    a7913[n_]:=a7913[n]=Times@@(#[[1]]^Mod[#[[2]],2])&[Transpose[FactorInteger[n]]];
    Flatten[Table[a7913[Binomial[a7913[m],a7913[k]]],{m,0,10},{k,0,m}]] (* Peter J. C. Moses, Oct 27 2014 *)

A249416 a(n) = core(Sum_{i=0,...,n} core(binomial(n,i))), where core(n) = A007913(n).

Original entry on oeis.org

1, 2, 1, 2, 10, 2, 1, 2, 118, 19, 519, 2, 635, 370, 829, 1333, 8454, 17315, 3599, 15307, 423769, 852006, 495431, 2, 2425755, 2121070, 3192295, 1614598, 35685686, 10081687, 735961, 12902173, 216093318, 151123623, 5270424935, 39937013, 22884337, 7281379334
Offset: 0

Views

Author

Vladimir Shevelev, Oct 28 2014

Keywords

Crossrefs

Programs

  • Mathematica
    a7913[n_]:=a7913[n]=Times@@(#[[1]]^Mod[#[[2]],2])&[Transpose[FactorInteger[n]]];
    Map[a7913[Total[Map[a7913,Binomial[#,Range[0,#]]]]]&,Range[0,50]] (* Peter J. C. Moses, Oct 28 2014 *)
  • PARI
    a(n) = core(sum(i=0, n, core(binomial(n,i)))); \\ Michel Marcus, Nov 13 2014

Extensions

More terms from Peter J. C. Moses, Oct 28 2014
Showing 1-4 of 4 results.