cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A245618 Triangle {H(n,k)} similar to Pascal's with sides of 1's, but interior entries are obtained by the rule: H(n,k) = |H(n-1,k)+(-1)^m(n,k)*H(n-1,k-1)|, where m(n,k) = H(n-1,k) + H(n-1,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 4, 4, 1, 1, 1, 2, 3, 8, 3, 2, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 2, 2, 6, 10, 6, 2, 2, 1, 1, 1, 4, 8, 16, 16, 8, 4, 1, 1, 1, 2, 3, 12, 24, 32, 24, 12, 3, 2, 1, 1, 1, 1, 9, 36, 56, 56, 36, 9, 1, 1, 1, 1, 2, 2, 10
Offset: 0

Views

Author

Vladimir Shevelev, Nov 05 2014

Keywords

Comments

Let us consider the operation <+> over integers such that k<+>m = |k+(-1)^(k+m)*m|. Then H(n,k) = H(n-1,k)<+>H(n-1,k-1).
This is an analog of the formula binomial(n,k) = binomial(n-1,k) + binomial(n-1,k-1).

Examples

			Triangle begins
1
1  1
1  2  1
1  1  1  1
1  2  2  2  1
1  1  4  4  1  1
1  2  3  8  3  2  1
....................
		

Crossrefs

Cf. A007318, row sums in A245619, row "sums", using <+>, in A249388.

Programs

  • Mathematica
    parityAdd[a_, b_] := Abs[a + b (-1)^(a + b)];
    triangleHP[n_, 0] := 1;
    triangleHP[n_, n_] := 1;
    triangleHP[n_, k_] := triangleHP[n, k] = parityAdd[triangleHP[n - 1, k - 1], triangleHP[n - 1, k]];
    Flatten[Table[triangleHP[n, k], {n, 0, 15}, {k, 0, n}]] (* Peter J. C. Moses, Nov 05 2014 *)

Extensions

More terms from Peter J. C. Moses, Nov 05 2014

A249779 Row "sums" of Pascal triangle (A007318), using operation <+> defined in comment in A245618.

Original entry on oeis.org

1, 2, 2, 2, 2, 22, 20, 28, 2, 494, 912, 1672, 2376, 4836, 4160, 4184, 2, 131038, 261800, 522272, 1035804, 2053288, 3977272, 7742352, 13942968, 28016020, 47111040, 84948528, 92072064, 272727022, 249686810, 167376688, 2, 8589934526, 17179867992, 34359725136
Offset: 0

Views

Author

Vladimir Shevelev, Nov 05 2014

Keywords

Comments

Operation <+> is defined in A245618 as: k<+>m = |k+(-1)^(k+m)*m|.
a(n)=2 for n=1,2,3,4,8,16,32,64,128,256,...

Examples

			For n=4, we have row 1,4,6,4,1.
By definition of <+>, we find 1<+>4=3, 3<+>6=3, 3<+>4=1, 1<+>1=2. So a(4)=2.
		

Crossrefs

Programs

  • Mathematica
    a249779[n_Integer] := Module[{m0082, pls, lst},
      m0082[j_] := Table[Binomial[j, k], {k, 0, j}];
      pls[k_, m_] := Abs[k + (-1)^(k + m)*m];
      lst = m0082[n];
      For[i = 0, i < n, i++, lst[[2]] = pls[lst[[1]], lst[[2]]];
       lst = Drop[lst, 1]];
      lst[[1]]
    ]; a249779 /@ Range[35] (* Michael De Vlieger, Nov 23 2014 *)
    parityAdd[a_,b_]:=Abs[a+b (-1)^(a+b)];
    Map[Fold[parityAdd,First[#],Rest[#]]&[Binomial[#,Range[0,#]]]&,Range[0,35]] (* Peter J. C. Moses, Dec 01 2014 *)

Extensions

More terms from Peter J. C. Moses, Nov 05 2014

A249416 a(n) = core(Sum_{i=0,...,n} core(binomial(n,i))), where core(n) = A007913(n).

Original entry on oeis.org

1, 2, 1, 2, 10, 2, 1, 2, 118, 19, 519, 2, 635, 370, 829, 1333, 8454, 17315, 3599, 15307, 423769, 852006, 495431, 2, 2425755, 2121070, 3192295, 1614598, 35685686, 10081687, 735961, 12902173, 216093318, 151123623, 5270424935, 39937013, 22884337, 7281379334
Offset: 0

Views

Author

Vladimir Shevelev, Oct 28 2014

Keywords

Crossrefs

Programs

  • Mathematica
    a7913[n_]:=a7913[n]=Times@@(#[[1]]^Mod[#[[2]],2])&[Transpose[FactorInteger[n]]];
    Map[a7913[Total[Map[a7913,Binomial[#,Range[0,#]]]]]&,Range[0,50]] (* Peter J. C. Moses, Oct 28 2014 *)
  • PARI
    a(n) = core(sum(i=0, n, core(binomial(n,i)))); \\ Michel Marcus, Nov 13 2014

Extensions

More terms from Peter J. C. Moses, Oct 28 2014
Showing 1-3 of 3 results.