cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A245619 Row sums of triangle A245618.

Original entry on oeis.org

1, 2, 4, 4, 8, 12, 20, 16, 32, 60, 116, 208, 380, 608, 904, 860, 1720, 3436, 6868, 13712, 27356, 54408, 107848, 211500, 413364, 785328, 1469288, 2591452, 4583052, 7074876, 10413552, 10096084, 20192168, 40384332, 80768660, 161537296, 323074460, 646148360
Offset: 0

Views

Author

Vladimir Shevelev, Nov 05 2014

Keywords

Crossrefs

Extensions

More terms from Peter J. C. Moses, Nov 05 2014

A249768 Row "sums" of triangle A245618, using the operation <+> defined in A245618.

Original entry on oeis.org

1, 2, 2, 2, 2, 10, 8, 2, 2, 58, 104, 186, 292, 442, 410, 2, 2, 3434, 6856, 13674, 27192, 53912, 105770, 205628, 389108, 732762, 1286970, 2181624, 3237606, 5206764, 4527418, 2204, 2, 40384330, 80768648, 161537226, 323074168, 646146872, 1292283522, 2584509436
Offset: 0

Views

Author

Vladimir Shevelev, Nov 05 2014

Keywords

Examples

			For n=6 we have the following row of triangle A245618: 1  2  3  8  3  2  1.
We have 1<+>2=1, 1<+>3=4, 4<+>8=12, 12<+>3=9, 9<+>2=7, 7<+>1=8. So, a(6)=8.
		

Crossrefs

Programs

  • Mathematica
    parityAdd[a_,b_]:=Abs[a+b (-1)^(a+b)];
    t[n_,0]:=1;
    t[n_,n_]:=1;
    t[n_,k_]:=t[n,k]=parityAdd[t[n-1,k-1],t[n-1,k]];
    Map[Fold[parityAdd,First[#],Rest[#]]&,Table[t[n,k],{n,0,40},{k,0,n}]] (* Peter J. C. Moses, Nov 05 2014 *)

Extensions

More terms from Peter J. C. Moses, Nov 05 2014

A249779 Row "sums" of Pascal triangle (A007318), using operation <+> defined in comment in A245618.

Original entry on oeis.org

1, 2, 2, 2, 2, 22, 20, 28, 2, 494, 912, 1672, 2376, 4836, 4160, 4184, 2, 131038, 261800, 522272, 1035804, 2053288, 3977272, 7742352, 13942968, 28016020, 47111040, 84948528, 92072064, 272727022, 249686810, 167376688, 2, 8589934526, 17179867992, 34359725136
Offset: 0

Views

Author

Vladimir Shevelev, Nov 05 2014

Keywords

Comments

Operation <+> is defined in A245618 as: k<+>m = |k+(-1)^(k+m)*m|.
a(n)=2 for n=1,2,3,4,8,16,32,64,128,256,...

Examples

			For n=4, we have row 1,4,6,4,1.
By definition of <+>, we find 1<+>4=3, 3<+>6=3, 3<+>4=1, 1<+>1=2. So a(4)=2.
		

Crossrefs

Programs

  • Mathematica
    a249779[n_Integer] := Module[{m0082, pls, lst},
      m0082[j_] := Table[Binomial[j, k], {k, 0, j}];
      pls[k_, m_] := Abs[k + (-1)^(k + m)*m];
      lst = m0082[n];
      For[i = 0, i < n, i++, lst[[2]] = pls[lst[[1]], lst[[2]]];
       lst = Drop[lst, 1]];
      lst[[1]]
    ]; a249779 /@ Range[35] (* Michael De Vlieger, Nov 23 2014 *)
    parityAdd[a_,b_]:=Abs[a+b (-1)^(a+b)];
    Map[Fold[parityAdd,First[#],Rest[#]]&[Binomial[#,Range[0,#]]]&,Range[0,35]] (* Peter J. C. Moses, Dec 01 2014 *)

Extensions

More terms from Peter J. C. Moses, Nov 05 2014

A011369 a(n+1) = a(n) - F(n) if > 0, otherwise a(n) + F(n), where F() are Fibonacci numbers; a(0) = 0.

Original entry on oeis.org

0, 0, 1, 2, 4, 1, 6, 14, 1, 22, 56, 1, 90, 234, 1, 378, 988, 1, 1598, 4182, 1, 6766, 17712, 1, 28658, 75026, 1, 121394, 317812, 1, 514230, 1346270, 1, 2178310, 5702888, 1, 9227466, 24157818, 1, 39088170, 102334156, 1, 165580142, 433494438, 1, 701408734, 1836311904
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{n = 0, f}, NestList[If[(f = Fibonacci[n++]) < #, # - f, # + f] &, 0, 49]] (* Paolo Xausa, Nov 08 2024 *)
    Flatten[Join[{0, 0}, Table[{1, Fibonacci[{k, k+2}] + 1}, {k, 2, 49, 3}]]] (* Paolo Xausa, Nov 08 2024 *)
    LinearRecurrence[{1, 0, 4, -4, 0, 1, -1}, {0, 0, 1, 2, 4, 1, 6, 14, 1}, 50] (* Paolo Xausa, Nov 08 2024 *)
  • PARI
    a(n) = if (n==0, 0, my(d=a(n-1)-fibonacci(n-1)); if (d>0, d, d+2*fibonacci(n-1))) \\ Michel Marcus, Dec 29 2018
    
  • PARI
    a(n) = if (n<=1, 0, my(m=(n % 3)); if (m==0, fibonacci(n-1)+1, if (m==1, fibonacci(n)+1, 1))); \\ Michel Marcus, Dec 29 2018

Formula

a(n) = 0, if n <= 1; F(n-1)+1, if n == 0 (mod 3); F(n)+1, if n == 1 (mod 3); 1, if n == 2 (mod 3). - David W. Wilson; corrected by Michel Marcus, Dec 29 2018
For n>=1, a(n) = F(0)<+>F(1)<+>...<+>F(n-1), where operation <+> is defined in comment in A245618. - Vladimir Shevelev, Nov 05 2014
Empirical g.f.: -x^2*(2*x^6 - x^4 + 7*x^3 - 2*x^2 - x - 1) / ((x-1)*(x^2 + x - 1)*(x^4 - x^3 + 2*x^2 + x + 1)). - Colin Barker, Nov 06 2014

Extensions

Name edited by Michel Marcus, Dec 29 2018
Showing 1-4 of 4 results.