cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A351575 Positions of primes in A351568.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 44, 45, 48, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 84, 90, 92, 99, 108, 112, 116, 117, 124, 126, 132, 140, 148, 150, 153, 156, 164, 171, 172, 175, 176, 188, 192, 198, 200, 204, 207, 208, 212, 220, 228, 234, 236, 240, 244, 260, 261, 268, 272, 275, 276, 279, 284, 288, 289, 292, 304, 306
Offset: 1

Views

Author

Antti Karttunen, Feb 24 2022

Keywords

Comments

Numbers k such that A350388(k) is one of the terms of A023194.

Crossrefs

Positions of primes in A351568, positions of ones in A351570.

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], (p^(e + 1) - 1)/(p - 1), 1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[300], PrimeQ[s[#]] &] (* Amiram Eldar, Feb 25 2022 *)
  • PARI
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351568(n) = sigma(A350388(n));
    isA351575(n) = isprime(A351568(n));

A377991 Numbers k such that A351568(k) and A351569(k) are not coprime, where A351568 and A351569 are the sum of divisors of the largest unitary divisor of n that is a square, and of the largest unitary divisor of n that is an exponentially odd number, respectively.

Original entry on oeis.org

52, 98, 156, 164, 245, 260, 294, 332, 338, 364, 388, 392, 468, 490, 492, 539, 556, 572, 668, 722, 724, 735, 780, 820, 833, 845, 882, 884, 892, 927, 972, 976, 980, 988, 996, 1004, 1014, 1078, 1092, 1125, 1127, 1148, 1164, 1172, 1176, 1196, 1228, 1274, 1300, 1352, 1396, 1404, 1421, 1470, 1476, 1508, 1525, 1568, 1573
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2024

Keywords

Examples

			A351568(52) = 7 and A351569(52) = 14, so they share a factor (7), and therefore 52 is included as a term.
		

Crossrefs

Positions k where A377990(k) is larger than A051027(k).
Subsequence of A336548.

Programs

  • PARI
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351568(n) = sigma(A350388(n));
    isA377991(n) = (1A351568(n), sigma(n)/A351568(n)));

Formula

{k such that gcd(A351568(n),A351569(n)) > 1}.
{k such that A377990(k) > A051027(k)}.

A342925 a(n) = A003415(sigma(n)), where A003415 is the arithmetic derivative, and sigma is the sum of divisors of n.

Original entry on oeis.org

0, 1, 4, 1, 5, 16, 12, 8, 1, 21, 16, 32, 9, 44, 44, 1, 21, 16, 24, 41, 80, 60, 44, 92, 1, 41, 68, 92, 31, 156, 80, 51, 112, 81, 112, 20, 21, 92, 92, 123, 41, 272, 48, 124, 71, 156, 112, 128, 22, 34, 156, 77, 81, 244, 156, 244, 176, 123, 92, 332, 33, 272, 164, 1, 124, 384, 72, 165, 272, 384, 156, 119, 39, 101, 128, 188
Offset: 1

Views

Author

Antti Karttunen, Apr 07 2021

Keywords

Crossrefs

Cf. A023194 (positions of ones, which is a subsequence of prime powers, A000961).
Cf. A342021 (fixed points), A343216 [positions k where a(k) < k], A343217 [a(k) >= k], A343218 [a(k) > k].
Cf. A347870 (parity of terms), A347872, A347873, A347877 (positions of odd terms), A347878 (of even terms), A343218, A343220, A344024.

Programs

  • Mathematica
    Array[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ DivisorSigma[1, #] &, 76] (* Michael De Vlieger, Apr 08 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342925(n) = A003415(sigma(n));

Formula

a(A023194(n)) = 1.
If gcd(m,n) = 1, a(m*n) = sigma(m)*A003415(sigma(n)) + sigma(n)*A003415(sigma(m)) = sigma(m)*a(n) + sigma(n)*a(m).
a(n) = (A351568(n)*A351571(n)) + (A351569(n)*A351570(n)). - Antti Karttunen, Feb 23 2022

A358347 a(n) is the sum of the unitary divisors of n that are squares.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 1, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 1, 26, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 50, 1, 1, 1, 1, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 10, 1, 1, 26, 5, 1, 1, 1, 17, 82, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2022

Keywords

Comments

The number of unitary divisors of n that are squares is A056624(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, f[i,1]^f[i,2] + 1));}

Formula

a(n) >= 1 with equality if and only if n is an exponentially odd number (A268335).
Multiplicative with a(p^e) = p^e + 1 if e is even, and 1 otherwise.
a(n) = A034448(n)/A358346(n).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(5/2)) = 0.6491241554... .
Dirichlet g.f.: zeta(s)*zeta(2*s-2)/zeta(3*s-2). - Amiram Eldar, Jan 29 2023
a(n) = A034448(A350388(n)). - Amiram Eldar, Sep 09 2023

A351569 Sum of divisors of the largest unitary divisor of n that is an exponentially odd number.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 15, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 60, 1, 42, 40, 8, 30, 72, 32, 63, 48, 54, 48, 1, 38, 60, 56, 90, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 120, 72, 120, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 15, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2022

Keywords

Crossrefs

Cf. A000203, A013662, A028982 (positions of odd terms), A268335 (exponentially odd numbers), A350389, A351568, A351571.
Coincides with A001615 on squarefree numbers, A005117.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 23 2022 *)
  • PARI
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351569(n) = sigma(A350389(n));
    
  • Python
    from math import prod
    from sympy import factorint
    def A351569(n): return prod((p**(e+1)-1)//(p-1) if e % 2 else 1 for p, e in factorint(n).items()) # Chai Wah Wu, Feb 24 2022

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd and 1 otherwise.
a(n) = A000203(A350389(n)).
a(n) = A000203(n) / A351568(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(4)/2 = Pi^4/180 = 0.541161... . - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(2*s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s - 1/p^(2*s-2)). - Amiram Eldar, Sep 03 2023

A351570 Arithmetic derivative of the sum of the divisors of the largest unitary divisor of n that is a square.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 22, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 22, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 22, 1, 38
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2022

Keywords

Comments

Observation: There seems to be no terms in range 2..19 in this sequence.

Crossrefs

Cf. A000203, A003415, A342925, A350388, A351568, A351571, A351572, A351575 (positions of ones).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351570(n) = A003415(sigma(A350388(n)));

Formula

A365401 The number of divisors of the largest unitary divisor of n that is a square.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2023

Keywords

Comments

First differs from A212181 at n = 32.
The sum of these divisors is A351568(n).
All the terms are odd.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, 1, x+1), factor(n)[, 2]));

Formula

a(n) = A000005(A350388(n)).
a(n) = A000005(n) / A365402(n).
a(n) <= A000005(n) with equality if and only if n is a square (A000290).
a(n) >= 1 with equality if and only if n is an exponentially odd number (A268335).
Multiplicative with a(p^e) = 1 if e is odd, and e+1 if e is even.
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 1/p^s + 1/p^(2*s) - 1/p^(3*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s)^2 * Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^4 * n / 36 + sqrt(n) * zeta(1/2) * f(1/2)/2 * (log(n) + 4*gamma - 2 + zeta'(1/2)/zeta(1/2) + f'(1/2)/f(1/2)), where
f(1) = Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.7446954979060674204391238715944543281179691329049241118630718137015097502...,
f(1/2) = Product_{p prime} (1 - 2/p^(3/2) + 1/p^2) = 0.2312522106782016049013780988087017618011735848676872392115785564006277675...,
f'(1/2) = f(1/2) * Sum_{p prime} 2*(3*sqrt(p) - 2) * log(p) / (1 - 2*sqrt(p) + p^2) = f(1/2) * 6.937179176924511608542644054340717439502789953858512457656... and gamma is the Euler-Mascheroni constant A001620. (End)

A367171 The sum of divisors of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 1, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 4, 31, 42, 1, 56, 30, 72, 32, 1, 48, 54, 48, 91, 38, 60, 56, 6, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 3, 72, 8, 80, 90, 60, 168, 62, 96, 104, 1, 84, 144, 68, 126
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], (p^(e+1)-1)/(p-1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), (f[i, 1]^(f[i, 2]+1)-1)/(f[i, 1]-1), 1));}

Formula

Multiplicative with a(p^e) = (p^(A048298(e)+1)-1)/(p-1).
a(n) = A000203(A367168(n)).
a(n) <= A000203(n), with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2)/zeta(3) = 1.368432... (A306633).

A367988 The sum of the divisors of the square root of the largest unitary divisor of n that is a square.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 3, 1, 1, 1, 7, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 7, 8, 6, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 15, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 6, 3, 1, 1, 1, 7, 13, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], (p^(e/2 + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, (f[i,1]^(f[i,2]/2 + 1) - 1)/(f[i,1] - 1)));}

Formula

Multiplicative with a(p^e) = (p^(e/2+1)-1)/(p-1) if e is even and 1 otherwise.
a(n) = A000203(A071974(n)).
a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).
Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-1)).
From Vaclav Kotesovec, Apr 20 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/((p^s + 1)*p^(2*s - 1))).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A065463 = Product_{p prime} (1 - 1/(p*(1+p))) = 0.704442200999165592736603350326637210188586431417098049414226842591097056682...
f'(1) = f(1) * Sum_{p prime} (3*p+2)*log(p)/((p+1)*(p^2+p-1)) = f(1) * 1.167129912223800181472507785468113632129480568043855995406075158923507536957...
and gamma is the Euler-Mascheroni constant A001620. (End)

A377990 a(n) = sigma(sigma(A350388(n))) * sigma(sigma(A350389(n))), where A350388 and A350389 are the largest unitary divisor of n that is a square, and the largest unitary divisor of n that is an exponentially odd number, respectively.

Original entry on oeis.org

1, 4, 7, 8, 12, 28, 15, 24, 14, 39, 28, 56, 24, 60, 60, 32, 39, 56, 42, 96, 63, 91, 60, 168, 32, 96, 90, 120, 72, 195, 63, 104, 124, 120, 124, 112, 60, 168, 120, 234, 96, 252, 84, 224, 168, 195, 124, 224, 80, 128, 195, 192, 120, 360, 195, 360, 186, 234, 168, 480, 96, 252, 210, 128, 224, 403, 126, 312, 252, 403, 195
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2024

Keywords

Comments

Differs from A051027 at 52, 98, 156, 164, 245, ..., = A377991.

Crossrefs

Programs

  • PARI
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A377990(n) = (sigma(sigma(A350388(n))) * sigma(sigma(A350389(n))));

Formula

a(n) = A051027(A350388(n)) * A051027(A350389(n)).
a(n) = sigma(A351568(n)) * sigma(A351569(n)).
Showing 1-10 of 11 results. Next