cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A358346 a(n) is the sum of the unitary divisors of n that are exponentially odd (A268335).

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 9, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 36, 1, 42, 28, 8, 30, 72, 32, 33, 48, 54, 48, 1, 38, 60, 56, 54, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 84, 72, 72, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2022

Keywords

Comments

The number of unitary divisors of n that are exponentially odd is A055076(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + If[OddQ[e], p^e, 0]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + if(f[i,2]%2,  f[i,1]^f[i,2], 0));}

Formula

a(n) >= 1 with equality if and only if n is a square (A000290).
a(n) <= A033634(n) with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = p^e + 1 if e is odd, and 1 otherwise.
a(n) = A034448(n)/A358347(n).
Sum_{k=1..n} a(k) ~ n^2/2.
From Amiram Eldar, Sep 14 2023: (Start)
a(n) = A034448(A350389(n)).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(2*s-1)). (End)

A380396 a(n) is the sum of the unitary divisors of n that are cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2025

Keywords

Comments

The number of unitary divisors of n that are cubes is A380395(n).

Examples

			a(8) = 9 since 8 has 2 unitary divisors that are cubes, 1 = 1^3 and 8 = 2^3, and 1 + 8 = 9.
a(216) = 252 since 216 has 4 unitary divisors that are cubes, 1 = 1^3, 8 = 2^3, 27 = 3^3 and 216 = 6^3, and 1 + 8 + 27 + 216 = 252.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, 3], p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%3, 1, f[i, 1]^f[i, 2] + 1));}

Formula

a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * [d is cube], where [] is the Iverson bracket.
a(n) >= 1, with equality if and only if n is not in A366761.
a(n) <= A113061(n), with equality if and only if n is biquadratefree (A046100).
Multiplicative with a(p^e) = p^e + 1 if e is divisible by 3, and 1 otherwise.
Sum_{k=1..n} a(k) ~ c * n^(4/3) / 4, where c = zeta(4/3)/zeta(7/3) = 2.54455250463133711749... .
Dirichlet g.f.: zeta(s) * zeta(3*s-3) / zeta(4*s-3).
In general, the average order of the sum of the unitary divisors that are m-powers is c * n^(1+1/m) / (m+1), where c = zeta(1+1/m)/zeta(2+1/m), and its Dirichlet g.f. is zeta(s) * zeta(m*s-m) / zeta((m+1)*s-m), both for m >= 2.

A385043 The sum of the unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 1, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 4, 26, 42, 1, 40, 30, 72, 32, 1, 48, 54, 48, 50, 38, 60, 56, 6, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 3, 72, 8, 80, 90, 60, 120, 62, 96, 80, 1, 84, 144, 68, 90, 96
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The number of these divisors is A385042(n), and the largest of them is A367168(n).

Crossrefs

The unitary analog of A353900.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), this sequence (exponentially 2^n), A385045 (5-rough), A385046 (3-smooth), A385047 (power of 2), A385048 (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], p^e + 1, 1]; a[ 1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1<
    				

Formula

Multiplicative with a(p^e) = p^(A209229(e)) + 1.
a(n) <= A034448(n), with equality if and only if n is in A138302.
a(n) <= A353900(n), with equality if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1/(p*(p+1)) + Sum_{k>=2} (1/p^(2^k)-1/p^(2^k-1))) = 1.21427559551509410114... .

A385045 The sum of the unitary divisors of n that are 5-rough numbers (A007310).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 8, 1, 1, 6, 12, 1, 14, 8, 6, 1, 18, 1, 20, 6, 8, 12, 24, 1, 26, 14, 1, 8, 30, 6, 32, 1, 12, 18, 48, 1, 38, 20, 14, 6, 42, 8, 44, 12, 6, 24, 48, 1, 50, 26, 18, 14, 54, 1, 72, 8, 20, 30, 60, 6, 62, 32, 8, 1, 84, 12, 68, 18, 24, 48, 72, 1, 74, 38
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A186099 at n = 25; a(25) = 26, while A186099(25) = 31.
The number of these divisors is A385044(n), and the largest of them is A065330(n).

Crossrefs

The unitary analog of A186099.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), this sequence (5-rough), A385046 (3-smooth), A385047 (power of 2), A385048 (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3, 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] < 5, 1, f[i, 1]^f[i, 2] + 1));}

Formula

Multiplicative with a(p^e) = 1 if p <= 3, and p^e + 1 if p >= 5.
a(n) = A034448(n)/A385046(n).
a(n) <= A034448(n), with equality if and only if n is 5-rough.
a(n) <= A186099(n).
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s-1)) * ((1-1/2^(s-1))/(1-1/2^(2*s-1))) * ((1-1/3^(s-1))/(1-1/3^(2*s-1))).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*Pi^2/(91*zeta(3)) = 0.270679... .

A385046 The sum of the unitary divisors of n that are 3-smooth numbers (A003586).

Original entry on oeis.org

1, 3, 4, 5, 1, 12, 1, 9, 10, 3, 1, 20, 1, 3, 4, 17, 1, 30, 1, 5, 4, 3, 1, 36, 1, 3, 28, 5, 1, 12, 1, 33, 4, 3, 1, 50, 1, 3, 4, 9, 1, 12, 1, 5, 10, 3, 1, 68, 1, 3, 4, 5, 1, 84, 1, 9, 4, 3, 1, 20, 1, 3, 10, 65, 1, 12, 1, 5, 4, 3, 1, 90, 1, 3, 4, 5, 1, 12, 1, 17
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The number of these divisors is A382488(n), and the largest of them is A065331(n).

Crossrefs

The unitary analog of A072079.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), this sequence (3-smooth), A385047 (power of 2), A385048 (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[n_, p_] := If[Divisible[n, p], p^IntegerExponent[n, p] + 1, 1]; a[n_] := f[n, 2]*f[n, 3]; Array[a, 100]
  • PARI
    a(n) = if(n%2, 1, 2^valuation(n, 2)+1) * if(!(n%3), 3^valuation(n, 3)+1, 1);

Formula

Multiplicative with a(p^e) = p^e + 1 if p <= 3, and 1 if p >= 5.
a(n) = A034448(n)/A385045(n).
a(n) <= A034448(n), with equality if and only if n 3-smooth.
a(n) <= A072079(n).
Dirichlet g.f.: zeta(s) * ((1-1/2^(2*s-1))/(1-1/2^(s-1))) * ((1-1/3^(2*s-1))/(1-1/3^(s-1))).
Sum_{k=1..n} a(k) ~ (n/(6*log(2)*log(3))) * (log(n)^2 + c1*log(n) + c2), where c1 = 2*gamma - 2 + 7*log(2) + 5*log(3) - 2*log(6) = 5.916004..., c2 = 2 - 5*log(2) - 11*log(2)^2/6 - 3*log(3) - 5*log(3)^2/6 + 15*log(2)*log(3)/2 + (5*log(2) + 3*log(3) - 2)*gamma - 2*gamma_1 = 1.957142..., gamma is Euler's constant (A001620), and gamma_1 is the 1st Stieltjes constant (A082633).

A385047 The sum of the unitary divisors of n that are powers of 2.

Original entry on oeis.org

1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 17, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 33, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 17, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 65, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 17, 1, 3, 1, 5, 1, 3
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Crossrefs

The unitary analog of A038712.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), A385046 (3-smooth), this sequence (power of 2), A385048 (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    a[n_] := If[OddQ[n], 1, 2^IntegerExponent[n, 2] + 1]; Array[a, 100]
  • PARI
    a(n) = if(n%2, 1, 2^valuation(n, 2)+1);

Formula

Multiplicative with a(2^e) = 2^e + 1, and a(p^e) = 1 for an odd prime p.
a(n) = A034448(n) / A192066(n).
a(n) = A059841(n) + A006519(n), i.e., a(n) = A006519(n) + 1 if n is even, and 1 is n is odd.
Dirichlet g.f.: zeta(s) * ((1-1/2^(2*s-1))/(1-1/2^(s-1))).
Sum_{k=1..n} a(k) ~ (n/(2*log(2))) * (log(n) + gamma - 1 + 5*log(2)/2), where gamma is Euler's constant (A001620).

A385048 The sum of the unitary divisors of n that are cubefull numbers (A036966).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 33, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 82, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The number of these divisors is A368248(n), and the largest of them is A360540(n).

Crossrefs

The unitary analog of A385005.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), A385046 (3-smooth), A385047 (power of 2), this sequence (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] < 3, 1, f[i, 1]^f[i, 2] + 1));}

Formula

Multiplicative with a(p^e) = 1 if e <= 2, and a(p^e) = p^e + 1 if e >= 3.
a(n) = A034448(n) / A371242(n).
a(n) <= A034448(n), with equality if and only if n is cubefull (A036966).
a(n) <= A385005(n), with equality if and only if n is biquadratefree (A046100).
Dirichlet g.f.: zeta(s)*zeta(s-1)*Product_{p prime} (1 - 1/p^(s-1) + 1/p^(3*s-3) - 1/p^(4*s-3)).

A385049 The sum of the unitary divisors of n that are biquadratefree numbers (A046100).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 1, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 1, 84, 144, 68, 90
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A383763 at n = 32.
The number of these divisors is A365499(n), and the largest of them is A385007(n).

References

  • D. Suryanarayana, The number and sum of k-free integers <= x which are prime to n, Indian J. Math., Vol. 11 (1969), pp. 131-139.

Crossrefs

The unitary analog of A385006.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), A385046 (3-smooth), A385047 (power of 2), A385048 (cubefull), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e < 4, p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] < 4, f[i, 1]^f[i, 2] + 1, 1)); }

Formula

Multiplicative with a(p^e) = p^e + 1 for e <= 3, and a(p^e) = 1 for e >= 4.
a(n) = 1 if and only if n is 4-full (A036967).
a(n) <= A034448(n), with equality if and only if n is biquadratefree.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-2) - 1/p^(2*s-1) + 1/p^(3*s-3) - 1/p^(3*s-2) - 1/p^(4*s-3)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^2 + p) - 1/p^4) = 1.27769267395905900191... .

A360162 a(n) is the sum of the square roots of the unitary divisors of n that are squares.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 3, 1, 1, 1, 5, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 5, 8, 6, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 9, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 6, 3, 1, 1, 1, 5, 10, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

The number of unitary divisors of n that are squares is A056624(n) and their sum is A358347(n).
The unitary analog of A069290.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^(e/2) + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2) + 1)); }

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d square} sqrt(d).
Multiplicative with a(p^e) = p^(e/2) + 1 if e is even, and 1 if e is odd.
Dirichlet g.f.: zeta(s)*zeta(2*s-1)/zeta(3*s-1).
Sum_{k=1..n} a(k) ~ (3*n/Pi^2)*(log(n) + 3*gamma - 1 - 3*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).

A360160 a(n) is the sum of unitary divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 26, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 50, 26, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 26, 1, 1, 1, 1, 1, 82, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

The unitary analog of A360159.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^e + 1]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, if(f[i, 2]%2, 1, f[i, 1]^f[i, 2] + 1))); }

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d odd square} d.
a(n) = A358347(n) if n is not of the form (2*m - 1)*4^k where m >= 1, k >= 1 (A108269), and otherwise it equals A358347(n)/(A006519(n)+1).
Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = p^e + 1 if e is even and 1 if e is odd.
Dirichlet g.f.: (zeta(s)*zeta(2*s-2)/zeta(3*s-2))*(2^(3*s)-2^(s+2))/(2^(3*s)-4).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (2*sqrt(2)/(4*sqrt(2)-1)) * zeta(3/2)/(3*zeta(5/2)) = 0.3942576405... .
Showing 1-10 of 13 results. Next