cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A365402 The number of divisors of the largest unitary divisor of n that is an exponentially odd number.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 4, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 8, 1, 4, 4, 2, 2, 8, 2, 6, 4, 4, 4, 1, 2, 4, 4, 8, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 8, 4, 8, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 4, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2023

Keywords

Comments

The sum of these divisors is A351569(n).
All the terms are either 1 or even (A004277).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, x+1, 1), factor(n)[, 2]));
    
  • Python
    from math import prod
    from sympy import factorint
    def A365402(n): return prod(e+1 for e in factorint(n).values() if e&1) # Chai Wah Wu, Nov 17 2023
  • SageMath
    def a(n): return prod((valuation(n,p)+1) for p in prime_divisors(n) if valuation(n,p)%2==1) # Orges Leka, Nov 16 2023
    

Formula

a(n) = A000005(A350389(n)).
a(n) = A000005(n) / A365401(n).
a(n) <= A000005(n) with equality if and only if n is an exponentially odd number (A268335).
a(n) >= 1 with equality if and only if n is a square (A000290).
Multiplicative with a(p^e) = 1 if e is even, and e+1 if e is odd.
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 2/p^s - 1/p^(2*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(2*s)^2 * Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^4 * n / 36 * (log(n) + 2*gamma - 1 + 24*Zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...
f'(1) = f(1) * Sum_{p prime} 4*(2*p - 1) * log(p) / (1 - 3*p + p^2 + p^3) = f(1) * 3.3720882314412399056794495057358594564001229865925330149186567502684770675...
and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = Sum_{d|n} (-1)^(Sum_{p|gcd(d,n/d)} v_p(d)*v_p(n/d)), where v_p(x) denotes the valuation of x at the prime p. - Orges Leka, Nov 16 2023

A367170 The number of divisors of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 1, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 2, 3, 4, 1, 6, 2, 8, 2, 1, 4, 4, 4, 9, 2, 4, 4, 2, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 2, 4, 2, 4, 4, 2, 12, 2, 4, 6, 1, 4, 8, 2, 6, 4, 8, 2, 3, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Crossrefs

Similar sequences: A365401, A365402.

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e+1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), f[i, 2] + 1, 1));}

Formula

Multiplicative with a(p^e) = A048298(e) + 1.
a(n) = A000005(A367168(n)).
a(n) <= A000005(n), with equality if and only if n is in A138302.

A367987 The number of square divisors of the largest unitary divisor of n that is a square.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2023

Keywords

Comments

Also, the number of divisors of the square root of the largest unitary divisor of n that is a square.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], e/2 + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, 1, x/2+1), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = e/2 + 1 if e is even and 1 otherwise.
a(n) = A046951(A350388(n)).
a(n) = A000005(A071974(n)).
a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + p/((p-1)*(p+1)^2)) = 1.450032... (A335762).

A380164 a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is a square.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 2, 1, 1, 1, 8, 1, 6, 1, 2, 1, 1, 1, 1, 20, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 8, 42, 20, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 6, 32, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 20, 2, 1, 1, 1, 8, 54, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 2, 1, 1, 1, 1, 1, 42, 6, 40
Offset: 1

Views

Author

Amiram Eldar, Jan 14 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, (p-1)*p^(e-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, 1, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)));}

Formula

a(n) = A000010(A350388(n)).
a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).
a(n) <= A000010(n), with equality if and only if n is either a square (A000290) or twice an odd square (A077591 \ {1}).
Multiplicative with a(p^e) = (p-1)*p^(e-1) if e is even, and 1 otherwise.
Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s-1) - 1/p^(2*s) - 1/p^(3*s-2) + 1/p^(4*s-1)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(3) * Product_{p prime} (1 + 1/p^(3/2) - 1/p^2 - 1/p^(5/2) - 1/p^3 + 1/p^5) = 1.16404670858123447768... .
Showing 1-4 of 4 results.