cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A335762 Decimal expansion of Product_{p prime} (1 + p/((p-1)*(p+1)^2)).

Original entry on oeis.org

1, 4, 5, 0, 0, 3, 2, 1, 4, 5, 3, 6, 2, 1, 2, 0, 8, 3, 1, 6, 0, 8, 3, 9, 5, 8, 8, 7, 1, 8, 9, 2, 2, 3, 4, 2, 2, 3, 2, 5, 0, 6, 2, 1, 1, 7, 4, 4, 7, 1, 6, 7, 1, 4, 4, 6, 5, 2, 4, 3, 8, 8, 3, 6, 7, 0, 9, 4, 1, 6, 3, 3, 7, 2, 9, 3, 8, 0, 8, 3, 0, 7, 6, 8, 1, 3, 5, 8, 7, 0, 3, 6, 5, 5, 6, 3, 9, 1, 4, 6, 5, 5, 8, 5, 5
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Comments

The asymptotic mean of A367987. - Amiram Eldar, Dec 23 2023

Examples

			1.450032145362120831608395887189223422325062117447167...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-1, 1, 2, 0, -1}, {0, 2, -3, 6, -5}, m]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n])/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
  • PARI
    prodeulerrat(1 + p/((p-1)*(p+1)^2)) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{k>=1} 1/A000082(k) = Sum_{k>=1} 1/(k * A001615(k)).
Equals A013661 * A065465. - Amiram Eldar, Dec 23 2023

Extensions

More digits from Vaclav Kotesovec, Sep 19 2020

A367988 The sum of the divisors of the square root of the largest unitary divisor of n that is a square.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 3, 1, 1, 1, 7, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 7, 8, 6, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 15, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 6, 3, 1, 1, 1, 7, 13, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], (p^(e/2 + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, (f[i,1]^(f[i,2]/2 + 1) - 1)/(f[i,1] - 1)));}

Formula

Multiplicative with a(p^e) = (p^(e/2+1)-1)/(p-1) if e is even and 1 otherwise.
a(n) = A000203(A071974(n)).
a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).
Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-1)).
From Vaclav Kotesovec, Apr 20 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/((p^s + 1)*p^(2*s - 1))).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A065463 = Product_{p prime} (1 - 1/(p*(1+p))) = 0.704442200999165592736603350326637210188586431417098049414226842591097056682...
f'(1) = f(1) * Sum_{p prime} (3*p+2)*log(p)/((p+1)*(p^2+p-1)) = f(1) * 1.167129912223800181472507785468113632129480568043855995406075158923507536957...
and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-2 of 2 results.