cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A369939 Numbers whose maximal exponent in their prime factorization is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Feb 06 2024

Keywords

Comments

First differs from its subsequence A115063 at n = 2448. a(2448) = 2592 = 2^5 * 3^4 is not a term of A115063.
First differs from A209061 at n = 62.
Numbers k such that A051903(k) is a Fibonacci number.
The asymptotic density of this sequence is 1/zeta(4) + Sum_{k>=5} (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k))) = 0.94462177878047854647... .

Crossrefs

Similar sequences: A368714, A369937, A369938.

Programs

  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}];
    Select[Range[100], fibQ[Max[FactorInteger[#][[;; , 2]]]] &]
  • PARI
    isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
    is(n) = n == 1 || isfib(vecmax(factor(n)[, 2]));

A352780 Square array A(n,k), n >= 1, k >= 0, read by descending antidiagonals, such that the row product is n and column k contains only (2^k)-th powers of squarefree numbers.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Apr 02 2022

Keywords

Comments

This is well-defined because positive integers have a unique factorization into powers of nonunit squarefree numbers with distinct exponents that are powers of 2.
Each (infinite) row is the lexicographically earliest with product n and terms that are a (2^k)-th power for all k.
For all k, column k is column k+1 of A060176 conjugated by A225546.

Examples

			The top left corner of the array:
  n/k |   0   1   2   3   4   5   6
------+------------------------------
    1 |   1,  1,  1,  1,  1,  1,  1,
    2 |   2,  1,  1,  1,  1,  1,  1,
    3 |   3,  1,  1,  1,  1,  1,  1,
    4 |   1,  4,  1,  1,  1,  1,  1,
    5 |   5,  1,  1,  1,  1,  1,  1,
    6 |   6,  1,  1,  1,  1,  1,  1,
    7 |   7,  1,  1,  1,  1,  1,  1,
    8 |   2,  4,  1,  1,  1,  1,  1,
    9 |   1,  9,  1,  1,  1,  1,  1,
   10 |  10,  1,  1,  1,  1,  1,  1,
   11 |  11,  1,  1,  1,  1,  1,  1,
   12 |   3,  4,  1,  1,  1,  1,  1,
   13 |  13,  1,  1,  1,  1,  1,  1,
   14 |  14,  1,  1,  1,  1,  1,  1,
   15 |  15,  1,  1,  1,  1,  1,  1,
   16 |   1,  1, 16,  1,  1,  1,  1,
   17 |  17,  1,  1,  1,  1,  1,  1,
   18 |   2,  9,  1,  1,  1,  1,  1,
   19 |  19,  1,  1,  1,  1,  1,  1,
   20 |   5,  4,  1,  1,  1,  1,  1,
		

Crossrefs

Sequences used in a formula defining this sequence: A000188, A007913, A060176, A225546.
Cf. A007913 (column 0), A335324 (column 1).
Range of values: {1} U A340682 (whole table), A005117 (column 0), A062503 (column 1), {1} U A113849 (column 2).
Row numbers of rows:
- with a 1 in column 0: A000290\{0};
- with a 1 in column 1: A252895;
- with a 1 in column 0, but not in column 1: A030140;
- where every 1 is followed by another 1: A337533;
- with 1's in all even columns: A366243;
- with 1's in all odd columns: A366242;
- where every term has an even number of distinct prime factors: A268390;
- where every term is a power of a prime: A268375;
- where the terms are pairwise coprime: A138302;
- where the last nonunit term is coprime to the earlier terms: A369938;
- where the last nonunit term is a power of 2: A335738.
Number of nonunit terms in row n is A331591(n); their positions are given (in reversed binary) by A267116(n); the first nonunit is in column A352080(n)-1 and the infinite run of 1's starts in column A299090(n).

Programs

  • PARI
    up_to = 105;
    A352780sq(n, k) = if(k==0, core(n), A352780sq(core(n, 1)[2], k-1)^2);
    A352780list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, forstep(col=a-1,0,-1, i++; if(i > up_to, return(v)); v[i] = A352780sq(a-col,col))); (v); };
    v352780 = A352780list(up_to);
    A352780(n) = v352780[n];

Formula

A(n,0) = A007913(n); for k > 0, A(n,k) = A(A000188(n), k-1)^2.
A(n,k) = A225546(A060176(A225546(n), k+1)).
A331591(A(n,k)) <= 1.

A369937 Numbers whose maximal exponent in their prime factorization is square.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Amiram Eldar, Feb 06 2024

Keywords

Comments

First differs from A366762 at n = 84, and from A197680, A361177 and A369210 at n = 95.
Numbers k such that A051903(k) is square.
The asymptotic density of this sequence is 1/zeta(2) + Sum_{k>=2} (1/zeta(k^2+1) - 1/zeta(k^2)) = 0.64939447949574562687... .

Crossrefs

Programs

  • Mathematica
    Select[Range[100], IntegerQ@ Sqrt[Max[FactorInteger[#][[;; , 2]]]] &]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k == 1 || issquare(vecmax(factor(k)[, 2])), print1(k, ", ")));

A374590 Numbers whose maximum exponent in their prime factorization is an evil number (A001969).

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 64, 72, 88, 96, 104, 108, 120, 125, 135, 136, 152, 160, 168, 184, 189, 192, 200, 216, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 320, 328, 343, 344, 351, 352, 360, 375, 376, 378, 392, 408, 416, 424, 440, 448, 456, 459
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2024

Keywords

Comments

The asymptotic density of this sequence is Sum_{k in A001969} (1/zeta(k+1) - 1/zeta(k)) = 0.12101890210392912747... .

Crossrefs

Subsequence of A013929 and A262675 \ {1}.
Similar sequences: A368714, A369937, A369938, A369939, A374588, A374589.

Programs

  • Mathematica
    evilQ[n_] := EvenQ[DigitCount[n, 2, 1]]; q[n_] := evilQ[Max[FactorInteger[n][[;; , 2]]]]; Select[Range[500], q]
  • PARI
    is(n) = n > 1 && !(hammingweight(vecmax(factor(n)[, 2])) % 2);

A374327 The maximal exponent in the prime factorization of the numbers whose maximal exponent in their prime factorization is a power of 2.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jul 04 2024

Keywords

Comments

First differs from {A369933(n+1), n>=1} at n = 378.
The first occurrence of 2^k, for k = 0, 1, ..., is at 1, 3, 14, 224, 57307, ..., which is the position of 2^(2^k) at A369938.

Crossrefs

Similar sequences: A374324, A374325, A374326, A374328.

Programs

  • Mathematica
    f[n_] := Module[{e = If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]}, If[e == 2^IntegerExponent[e, 2], e, Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(e >> valuation(e, 2) == 1, print1(e, ", ")));}

Formula

a(n) = 2^A374328(n).
a(n) = A051903(A369938(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 2^k * d(k) / Sum_{k>=0} d(k) = 1.41151462942556759486..., where d(k) = 1/zeta(2^k+1) - 1/zeta(2^k) for k>=1, and d(0) = 1/zeta(2).

A374328 The base-2 logarithm of the maximal exponent in the prime factorization of the numbers whose maximal exponent in their prime factorization is a power of 2.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 04 2024

Keywords

Comments

First differs from {A369934(n+1), n>=1} at n = 378.
The first occurrence of k = 0, 1, ... is at 1, 3, 14, 224, 57307, ..., which is the position of 2^(2^k) at A369938.

Crossrefs

Similar sequences: A374324, A374325, A374326, A374327.

Programs

  • Mathematica
    f[n_] := Module[{e = If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]}, If[e == 2^IntegerExponent[e, 2], IntegerExponent[e, 2], Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(e >> valuation(e, 2) == 1, print1(valuation(e, 2), ", ")));}

Formula

a(n) = log_2(A374327(n)).
a(n) = log_2(A051903(A369938(n))).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} k * d(k) / Sum_{k>=0} d(k) = 0.35575339438419889972..., where d(k) = 1/zeta(2^k+1) - 1/zeta(2^k) for k>=1, and d(0) = 1/zeta(2).

A374588 Numbers whose maximum exponent in their prime factorization is a composite number.

Original entry on oeis.org

16, 48, 64, 80, 81, 112, 144, 162, 176, 192, 208, 240, 256, 272, 304, 320, 324, 336, 368, 400, 405, 432, 448, 464, 496, 512, 528, 560, 567, 576, 592, 624, 625, 648, 656, 688, 704, 720, 729, 752, 768, 784, 810, 816, 832, 848, 880, 891, 912, 944, 960, 976, 1008
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2024

Keywords

Comments

Subsequence of A322448 and first differs from it at n = 138: A322448(138) = 2592 = 2^5 * 3^4 is not a term of this sequence.
The asymptotic density of this sequence is d = Sum_{k composite} (1/zeta(k+1) - 1/zeta(k)) = 0.05296279266796920306... . The asymptotic density of this sequence within the nonsquarefree numbers (A013929) is d / (1 - 1/zeta(2)) = 0.13508404411123191108... .

Crossrefs

Complement of A074661 within A013929.
Subsequence of A322448 and A322449 \ {1}.
Similar sequences: A368714, A369937, A369938, A369939, A374589, A374590.

Programs

  • Maple
    filter:= proc(n) local m;
      m:= max(ifactors(n)[2][..,2]);
      m > 1 and not isprime(m)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jul 14 2024
  • Mathematica
    Select[Range[1200], CompositeQ[Max[FactorInteger[#][[;; , 2]]]] &]
  • PARI
    iscomposite(n) = n > 1 && !isprime(n);
    is(n) = n > 1 && iscomposite(vecmax(factor(n)[, 2]));

A374589 Numbers whose maximum exponent in their prime factorization is a powerful number larger than 1.

Original entry on oeis.org

16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 256, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 768, 784, 810, 816, 848, 880, 891, 912, 944, 976, 1008, 1040, 1053, 1072, 1104, 1134, 1136, 1168, 1200
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2024

Keywords

Comments

Subsequence of A130897 and first differs from it at n = 115: A130897(115) = 2592 = 2^5 * 3^4 is not a term of this sequence.
The asymptotic density of this sequence is d = Sum_{k > 1 and in A001694} (1/zeta(k+1) - 1/zeta(k)) = 0.043523813088759413253... . The asymptotic density of this sequence within A130897 is d/(1 - A262276) = 0.98744988886705430331... .

Crossrefs

Subsequence of A013929, A130897 and A372405.
Similar sequences: A368714, A369937, A369938, A369939, A374588, A374590.

Programs

  • Mathematica
    powQ[n_] := Min[FactorInteger[n][[;; , 2]]] > 1; q[n_] := powQ[Max[ FactorInteger[n][[;; , 2]] ]]; Select[Range[1200], q]
  • PARI
    ispow(n) = n > 1 && ispowerful(n);
    is(n) = n > 1 && ispow(vecmax(factor(n)[, 2]))
Showing 1-8 of 8 results.