cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065474 Decimal expansion of Product_{p prime} (1 - 2/p^2).

Original entry on oeis.org

3, 2, 2, 6, 3, 4, 0, 9, 8, 9, 3, 9, 2, 4, 4, 6, 7, 0, 5, 7, 9, 5, 3, 1, 6, 9, 2, 5, 4, 8, 2, 3, 7, 0, 6, 6, 5, 7, 0, 9, 5, 0, 5, 7, 9, 6, 6, 5, 8, 3, 2, 7, 0, 9, 9, 6, 1, 8, 1, 1, 2, 5, 2, 4, 5, 3, 2, 5, 0, 0, 6, 3, 4, 8, 6, 2, 4, 4, 6, 0, 9, 8, 8, 4, 5, 2, 3, 4, 8, 1, 5, 6, 8, 5, 6, 3, 7, 5, 5, 2, 1, 7, 7, 2, 7, 3
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Density of A007674, squarefree n such that n + 1 is squarefree. - Charles R Greathouse IV, Aug 10 2011
Product_{k>=1} (1 - 2/k^2) = sin(sqrt(2)*Pi) / (sqrt(2)*Pi). - Vaclav Kotesovec, May 23 2020
The asymptotic probability that, for two integers k and m, 0 < k <= m, we have gcd(k*(k+1), m) = 1 (when k and m are chosen at random in the range 1..n and n->oo) (Tóth and Sándor, 1989). - Amiram Eldar, Apr 29 2023

Examples

			0.322634098939244670579531692548...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 98; terms = 800; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0}, LinearRecurrence[{0, 2}, {-4, 0}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 2/p^2) \\ Amiram Eldar, Mar 16 2021

Extensions

Edited by Dean Hickerson, Sep 10 2002
More digits from Vaclav Kotesovec, Dec 18 2019