cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A065493 Decimal expansion of the Feller-Tornier constant (1 + A065474)/2.

Original entry on oeis.org

6, 6, 1, 3, 1, 7, 0, 4, 9, 4, 6, 9, 6, 2, 2, 3, 3, 5, 2, 8, 9, 7, 6, 5, 8, 4, 6, 2, 7, 4, 1, 1, 8, 5, 3, 3, 2, 8, 5, 4, 7, 5, 2, 8, 9, 8, 3, 2, 9, 1, 6, 3, 5, 4, 9, 8, 0, 9, 0, 5, 6, 2, 6, 2, 2, 6, 6, 2, 5, 0, 3, 1, 7, 4, 3, 1, 2, 2, 3, 0, 4, 9, 4, 2, 2, 6, 1, 7, 4, 0, 7, 8, 4, 2, 8, 1, 8, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

The asymptotic density of numbers with an even number of non-unitary prime divisors (A333634). - Amiram Eldar, May 23 2020
Named after the Croatian-American mathematician William Feller (1906-1970) and the German mathematician Erhard Tornier (1894-1982). - Amiram Eldar, Jun 16 2021

Examples

			0.661317049469622335289765846274...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4.1, p. 106.

Crossrefs

Programs

  • Mathematica
    digits = 98; r[n_] := -2^n; 1/2 + (1/2) Exp[NSum[r[n]*(PrimeZetaP[2*n]/n), {n, 1, Infinity}, NSumTerms -> 1000, WorkingPrecision -> 2 digits ]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    (1 + prodeulerrat(1 - 2/p^2))/2 \\ Amiram Eldar, Mar 17 2021

A074893 Continued fraction for the Product_{p prime} (1 - 2/p^2) (A065474).

Original entry on oeis.org

0, 3, 10, 19, 2, 1, 2, 2, 1, 6, 1, 6, 19, 17, 1, 7, 1, 2, 2, 1, 10, 2, 6, 2, 1, 3, 2, 1, 21, 5, 1, 15, 1, 1, 4, 1, 1, 1, 443, 2, 1, 4, 3, 1, 1, 6, 26, 6, 2, 39, 4, 1, 2, 6, 1, 1, 2, 4, 7, 1, 5, 1, 3, 1, 3, 5, 10, 1, 9, 5, 1, 2, 4, 10, 1, 1, 5, 1, 1, 3, 2, 2, 2, 2, 1, 4, 1, 1, 1, 1, 11, 1, 4, 1, 2, 2, 2, 54
Offset: 0

Views

Author

Robert G. Wilson v, Sep 13 2002

Keywords

Crossrefs

Increasing partial quotients are in A074178.

Programs

  • Mathematica
    (* download the constant from the link above and set it equal to a *) ContinuedFraction[a, 100]
  • PARI
    contfrac(prodeulerrat(1- 2/p^2)) \\ Amiram Eldar, Jun 13 2021

Extensions

a(1) inserted by Amiram Eldar, Jun 13 2021
Offset changed by Andrew Howroyd, Jul 08 2024

A076259 Gaps between squarefree numbers: a(n) = A005117(n+1) - A005117(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 4, 2, 2, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 4, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 2, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 03 2002

Keywords

Comments

This sequence is unbounded, as a simple consequence of the Chinese remainder theorem. - Thomas Ordowski, Jul 22 2015
Conjecture: lim sup_{n->oo} a(n)/log(A005117(n)) = 1/2. - Thomas Ordowski, Jul 23 2015 [Note: this conjecture is equivalent to lim sup a(n)/log n = 1/2. - Charles R Greathouse IV, Dec 05 2024]
a(n) = 1 infinitely often since the density of the squarefree numbers, 6/Pi^2, is greater than 1/2. In particular, at least 2 - Pi^2/6 = 35.5...% of the terms are 1. - Charles R Greathouse IV, Jul 23 2015
From Amiram Eldar, Mar 09 2021: (Start)
The asymptotic density of the occurrences of 1 in this sequence is density(A007674)/density(A005117) = A065474/A059956 = 0.530711... (A065469).
The asymptotic density of the occurrences of 2 in this sequence is (density(A069977)-density(A007675))/density(A005117) = (A065474-A206256)/A059956 = 0.324294... (End)

Examples

			As 24 = 3*2^3 and 25 = 5^2, the next squarefree number greater A005117(16) = 23 is A005117(17) = 26, therefore a(16) = 26-23 = 3.
		

Crossrefs

Programs

  • Haskell
    a076259 n = a076259_list !! (n-1)
    a076259_list = zipWith (-) (tail a005117_list) a005117_list
    -- Reinhard Zumkeller, Aug 03 2012
    
  • Maple
    A076259 := proc(n) A005117(n+1)-A005117(n) ; end proc: # R. J. Mathar, Jan 09 2013
  • Mathematica
    Select[Range[200], SquareFreeQ] // Differences (* Jean-François Alcover, Mar 10 2019 *)
  • PARI
    t=1; for(n=2,1e3, if(issquarefree(n), print1(n-t", "); t=n)) \\ Charles R Greathouse IV, Jul 23 2015
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A076259(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        r, k = n+1, f(n+1)+1
        while r != k:
            r, k = k, f(k)+1
        return int(r-m) # Chai Wah Wu, Aug 15 2024

Formula

Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = Pi^2/6 (A013661). - Amiram Eldar, Oct 21 2020
a(n) < n^(1/5) for large enough n by a result of Pandey. (The constant Pi^2/6 can be absorbed by any eta > 0.) - Charles R Greathouse IV, Dec 04 2024

A007674 Numbers m such that m and m+1 are squarefree.

Original entry on oeis.org

1, 2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 46, 57, 58, 61, 65, 66, 69, 70, 73, 77, 78, 82, 85, 86, 93, 94, 101, 102, 105, 106, 109, 110, 113, 114, 118, 122, 129, 130, 133, 137, 138, 141, 142, 145
Offset: 1

Views

Author

Keywords

Comments

m and m+1 squarefree implies that m*(m+1) is a squarefree oblong number and that m*(m+1)/2 is a squarefree triangular number. - Daniel Forgues, Aug 18 2012
Numbers m such that A002378(m) is squarefree. - Thomas Ordowski, Sep 01 2015

References

  • P. R. Halmos, Problems for Mathematicians Young and Old. Math. Assoc. America, 1991, p. 28.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    ff = {}; gg = {}; Do[kk = FactorInteger[n]; tak = False; Do[If[kk[[m]][[2]] > 1, tak = True], {m, 1, Length[kk]}]; If[tak == False, jj = FactorInteger[n + 1]; tak1 = False; Do[If[jj[[m]][[2]] > 1, tak1 = True], {m, 1, Length[jj]}]; If[tak1 == False, AppendTo[ff, n]]], {n, 1, 500}]; ff (* Artur Jasinski, Jan 28 2010 *)
    Select[Range[400],SquareFreeQ[#(#+1)]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
  • PARI
    list(lim)=my(v=vectorsmall(lim\1,i,1),u=List()); for(n=2, sqrt(lim), forstep(i=n^2,lim,n^2, v[i]=v[i-1]=0)); for(i=1,lim, if(v[i], listput(u,i))); v=0; Vec(u) \\ Charles R Greathouse IV, Aug 10 2011

Formula

A008966(a(n))*A008966(a(n)+1) = 1. - Reinhard Zumkeller, Dec 03 2009
a(n) ~ k*n, where k = 1/A065474. This result is originally due to Carlitz; for the (current) best error term, see Reuss. - Charles R Greathouse IV, Aug 10 2011, expanded Sep 18 2019

Extensions

Initial 1 added at the suggestion of Zak Seidov, Sep 19 2007

A078147 First differences of sequence of nonsquarefree numbers, A013929.

Original entry on oeis.org

4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, 4, 4, 3, 1, 4, 1, 3, 4, 2, 2, 4, 2, 1, 1, 4, 4, 4, 4, 1, 3, 1, 3, 1, 1, 2, 4, 3, 1, 4, 4, 3, 1, 2, 2, 1, 3, 4, 2, 2, 4, 1, 2, 1, 3, 1, 4, 4, 4, 1, 3, 4, 2, 2, 4, 3, 1, 4, 4, 4, 4, 1, 3, 4, 2, 2, 4, 2, 1, 1, 1, 3, 2, 2, 4, 4, 1, 3, 4, 2, 2, 3
Offset: 1

Views

Author

Labos Elemer, Nov 26 2002

Keywords

Comments

Run lengths in A132345, apart from initial run of zeros. - Reinhard Zumkeller, Apr 22 2012
The asymptotic density of the occurrences of 1 in this sequence is density(A068781)/density(A013929) = (1 - 2 * A059956 + A065474)/A229099 = 0.272347... - Amiram Eldar, Mar 09 2021

Examples

			a(1) = 4 = 8 - 4.
		

Crossrefs

Programs

  • Haskell
    a078147 n = a078147_list !! (n-1)
    a078147_list = zipWith (-) (tail a013929_list) a013929_list
    -- Reinhard Zumkeller, Apr 22 2012
    
  • Mathematica
    t=Flatten[Position[Table[MoebiusMu[w], {w, 1, 1000}], 0]]; t1=Delete[RotateLeft[t]-t, -1]
    Differences[Select[Range[300],!SquareFreeQ[#]&]] (* Harvey P. Dale, May 07 2012 *)
  • PARI
    lista(nn) = {my(prec=0); for (n=1, nn, if (!issquarefree(n), if (prec, print1(n-prec, ", ")); prec = n;););} \\ Michel Marcus, Mar 26 2020
    
  • Python
    from math import isqrt
    from sympy import mobius, factorint
    def A078147(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return next(i for i in range(1,5) if any(d>1 for d in factorint(m+i).values())) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = A013929(n+1) - A013929(n).
a(n) = 1, 2, 3 or 4 since n = 4*k is always nonsquarefree.
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = Pi^2/(Pi^2-6) = 2.550546... - Amiram Eldar, Oct 21 2020

Extensions

Offset fixed by Reinhard Zumkeller, Apr 22 2012

A072284 Numbers k begins a new chain of squarefree integers. I.e., k is squarefree but k-1 is not.

Original entry on oeis.org

1, 5, 10, 13, 17, 19, 21, 26, 29, 33, 37, 41, 46, 51, 53, 55, 57, 61, 65, 69, 73, 77, 82, 85, 89, 91, 93, 97, 101, 105, 109, 113, 118, 122, 127, 129, 133, 137, 141, 145, 149, 151, 154, 157, 161, 163, 165, 170, 173, 177, 181, 185, 190, 193, 197, 199, 201, 205, 209
Offset: 1

Views

Author

Joseph L. Pe, Jul 10 2002

Keywords

Comments

The asymptotic density of this sequence is 1/zeta(2) - Product_{p prime} (1 - 2/p^2) = A059956 - A065474 = 0.2852930029... (Matomäki et al., 2016) - Amiram Eldar, Feb 14 2021

Examples

			1 begins a new chain 1, 2, 3 of squarefree integers. 4 is not squarefree. Then 5 begins a new chain 5, 6, 7 of squarefree integers. Hence 1 and 5 are terms of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], MoebiusMu[# - 1] == 0  && Abs[MoebiusMu[#]] == 1 &] (* Amiram Eldar, Feb 14 2021 *)
    SequencePosition[Table[If[SquareFreeQ[n],1,0],{n,0,250}],{0,1}][[All,2]]-1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 24 2021 *)
  • PARI
    n=1; for(k=1,100, while(!issquarefree(n),n=n+1); print1(n","); while(issquarefree(n),n=n+1))

Formula

From Reinhard Zumkeller, Jan 20 2008: (Start)
A136742 mod a(n) = 0;
A136742(n) = Product_{k=0..A120992(n)-1} (a(n) + k);
A136743(n) = Sum_{k=0..A120992(n)-1} A001221(a(n) + k). (End)

Extensions

More terms from Ralf Stephan, Mar 19 2003

A068781 Lesser of two consecutive numbers each divisible by a square.

Original entry on oeis.org

8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

Also numbers m such that mu(m)=mu(m+1)=0, where mu is the Moebius-function (A008683); A081221(a(n))>1. - Reinhard Zumkeller, Mar 10 2003
The sequence contains an infinite family of arithmetic progressions like {36a+8}={8,44,80,116,152,188,...} ={4(9a+2)}. {36a+9} provides 2nd nonsquarefree terms. Such AP's can be constructed to any term by solution of a system of linear Diophantine equation. - Labos Elemer, Nov 25 2002
1. 4k^2 + 4k is a member for all k; i.e., 8 times a triangular number is a member. 2. (4k+1) times an odd square - 1 is a member. 3. (4k+3) times odd square is a member. - Amarnath Murthy, Apr 24 2003
The asymptotic density of this sequence is 1 - 2/zeta(2) + Product_{p prime} (1 - 2/p^2) = 1 - 2 * A059956 + A065474 = 0.1067798952... (Matomäki et al., 2016). - Amiram Eldar, Feb 14 2021
Maximum of the n-th maximal anti-run of nonsquarefree numbers (A013929) differing by more than one. For runs instead of anti-runs we have A376164. For squarefree instead of nonsquarefree we have A007674. - Gus Wiseman, Sep 14 2024

Examples

			44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From _Gus Wiseman_, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
  (4,8)
  (9,12,16,18,20,24)
  (25,27)
  (28,32,36,40,44)
  (45,48)
  (49)
  (50,52,54,56,60,63)
  (64,68,72,75)
  (76,80)
  (81,84,88,90,92,96,98)
  (99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
		

Crossrefs

Subsequence of A261869.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.

Programs

  • Haskell
    a068781 n = a068781_list !! (n-1)
    a068781_list = filter ((== 0) . a261869) [1..]
    -- Reinhard Zumkeller, Sep 04 2015
    
  • Mathematica
    Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
    f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
    Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
  • PARI
    isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021

Formula

A261869(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2015

A073247 Squarefree numbers k such that k-1 and k+1 are not squarefree.

Original entry on oeis.org

17, 19, 26, 51, 53, 55, 89, 91, 97, 127, 149, 151, 161, 163, 170, 197, 199, 233, 235, 241, 249, 251, 269, 271, 293, 295, 305, 307, 337, 339, 341, 349, 362, 377, 379, 413, 415, 449, 451, 485, 487, 489, 491, 521, 523, 530, 551, 557, 559, 577, 579, 593, 595
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Comments

Probably 11*n < a(n) < 12*n for n > 189. - Charles R Greathouse IV, Nov 05 2017
The asymptotic density of this sequence is 1/zeta(2) - 2 * Product_{p prime} (1 - 2/p^2) + Product_{p prime} (1 - 3/p^2) = A059956 - 2*A065474 + A206256 = 0.088145884881346585838... . - Amiram Eldar, Aug 30 2024

Crossrefs

Cf. A268331, A268332, A268333, A268334 (squarefree numbers isolated by more than 2, 3, etc.).

Programs

  • Maple
    sf:= select(numtheory:-issqrfree,[$1..1000]):
    map(t -> `if`(sf[t-1]=sf[t]-1 or sf[t+1]=sf[t]+1,NULL,sf[t]), [$2..nops(sf)-1]); # Robert Israel, Feb 01 2016
  • Mathematica
    Reap[For[n = 0, n <= 1000, n++, If[SquareFreeQ[n] && !SquareFreeQ[n-1] && !SquareFreeQ[n+1], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 26 2019 *)
  • PARI
    is(n)=!issquarefree(n-1) && issquarefree(n) && !issquarefree(n+1) \\ Charles R Greathouse IV, Nov 05 2017
    
  • PARI
    list(lim)=my(v=List(),l1,l2); forfactored(k=9,lim\1+1, if(!issquarefree(k) && !issquarefree(l2) && issquarefree(l1), listput(v,l1[1])); l2=l1; l1=k); Vec(v) \\ Charles R Greathouse IV, Nov 27 2024

A058026 Number of positive integers, k, where k <= n and gcd(k,n) = gcd(k+1,n) = 1.

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 5, 0, 3, 0, 9, 0, 11, 0, 3, 0, 15, 0, 17, 0, 5, 0, 21, 0, 15, 0, 9, 0, 27, 0, 29, 0, 9, 0, 15, 0, 35, 0, 11, 0, 39, 0, 41, 0, 9, 0, 45, 0, 35, 0, 15, 0, 51, 0, 27, 0, 17, 0, 57, 0, 59, 0, 15, 0, 33, 0, 65, 0, 21, 0, 69, 0, 71, 0, 15, 0, 45, 0, 77, 0, 27, 0, 81, 0, 45, 0, 27, 0
Offset: 1

Views

Author

Leroy Quet, Nov 15 2000

Keywords

Comments

Called the Schemmel totient function in the Handbook of Number Theory II. - R. J. Mathar, Apr 15 2011
a(n) is also the number of units u in Z/nZ such that Phi(1,u) or Phi(2,u) is a unit, where Phi is the cyclotomic polynomial. - Jordan Lenchitz, Jul 12 2017
This is the function phi(n, 1) in Alder. - Michel Marcus, Nov 14 2017

Examples

			a(15) = 3 because 1 and 2, 7 and 8 and 13 and 14 are all relatively prime to 15.
a(15) = a(3*5) = a(3)*a(5) = 3^0*(3-2)*5^0*(5-2) = 3.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 276.

Crossrefs

Cf. A000010 (phi(n,0)), A002472 (phi(n,2)).

Programs

  • Haskell
    a058026 n = product $ zipWith (\p e -> p ^ (e - 1) * (p - 2))
                                  (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 10 2014
    
  • Maple
    A058026 := proc(n) local a; a := n ; for p in numtheory[factorset](n) do a := a*(1-2/p) ; end do: a ; end proc: # R. J. Mathar, Apr 15 2011
  • Mathematica
    a[n_] := DivisorSum[n, n/# MoebiusMu[#] DivisorSigma[0, #]&]; Array[a, 90] (* Jean-François Alcover, Dec 05 2015 *)
    f[p_, e_] := (p-2) * p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
  • PARI
    a(n) = sumdiv(n, d, n/d*moebius(d)*numdiv(d)); \\ Michel Marcus, Apr 27 2014
    
  • PARI
    a(n) = n*prod(p=1, n, if (isprime(p) && !(n % p), (1-2/p), 1)); \\ Michel Marcus, Feb 02 2016
    
  • PARI
    a(n) = my(r=1,f=factor(n)); for(j=1, #f[,1], my(p=f[j,1],e=f[j,2]); r*=(p-2)*p^(e-1)); return(r); \\ Jianing Song, Nov 01 2022

Formula

Multiplicative with a(p^e) = p^(e-1)*(p-2). - Vladeta Jovovic, Dec 01 2001
a(n) = Sum_{d|n} n/d*mu(d)*tau(d). - Vladeta Jovovic, Apr 29 2002
a(n) = Sum_{d divides n} phi(n/d)*(-1)^omega(d). - Vladeta Jovovic, Sep 26 2002
A003557(n) | a(n). - R. J. Mathar, Mar 30 2011
a(n) = n*Product_{primes p|n} (1-2/p). Dirichlet g.f. zeta(s-1)*product_p (1-2*p^(-s)). - R. J. Mathar, Apr 15 2011
a(n) = phi(n) * Sum_{d|n} mu(d)/phi(d), where mu(k) is the Moebius function and phi(k) is the Euler totient function. - Daniel Suteu, Jun 23 2018
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065474 = Product_{primes p} (1 - 2/p^2) = 0.32263409893924467057953169254823706657095... - Vaclav Kotesovec, Dec 18 2019, corrected May 22 2025 (typo found by Amiram Eldar)
a(n) = Sum_{k=1..n} (-1)^omega(gcd(n,k)). - Ilya Gutkovskiy, Feb 22 2020
a(n) = Sum_{d1|n} Sum_{d2|n} mu(d1*d2)*floor(n/(d1*d2)). - Ridouane Oudra, Dec 31 2022

A335963 Decimal expansion of Product_{p prime, p == 1 (mod 4)} (1 - 2/p^2).

Original entry on oeis.org

8, 9, 4, 8, 4, 1, 2, 2, 4, 5, 6, 2, 4, 8, 8, 1, 7, 0, 7, 2, 5, 6, 6, 1, 5, 0, 6, 9, 0, 8, 4, 3, 7, 3, 2, 1, 9, 8, 7, 5, 4, 7, 8, 0, 8, 9, 2, 0, 7, 1, 8, 9, 7, 2, 6, 0, 1, 7, 9, 9, 4, 2, 7, 6, 1, 6, 5, 6, 3, 8, 9, 2, 2, 1, 2, 0, 9, 1, 5, 5, 0, 2, 8, 8, 5, 9, 4, 2, 9, 1, 0, 5, 3, 9, 5, 8, 9, 1, 0, 8, 0, 0, 3, 3, 2, 2
Offset: 0

Views

Author

Amiram Eldar, Jul 01 2020

Keywords

Comments

The asymptotic density of the numbers k such that k^2+1 is squarefree (A049533) (Estermann, 1931).
The constant c in Sum_{k=0..n} phi(k^2 + 1) = A333170(n) ~ (1/4)*c*n^3 (Finch, 2018).
The constant c in Sum_{k=0..n} phi(k^2 + 1)/(k^2 + 1) = (3/4)*c*n + O(log(n)^2) (Postnikov, 1988).

Examples

			0.89484122456248817072566150690843732198754780892071...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 101.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 166.
  • A. G. Postnikov, Introduction to Analytic Number Theory, Amer. Math. Soc., 1988, pp. 192-195.

Crossrefs

Programs

  • Maple
    Digits := 150;
    with(NumberTheory);
    DirichletBeta := proc(s) (Zeta(0, s, 1/4) - Zeta(0, s, 3/4))/4^s; end proc;
    alfa := proc(s) DirichletBeta(s)*Zeta(s)/((1 + 1/2^s)*Zeta(2*s)); end proc;
    beta := proc(s) (1 - 1/2^s)*Zeta(s)/DirichletBeta(s); end proc;
    pzetamod41 := proc(s, terms) 1/2*Sum(Moebius(2*j + 1)*log(alfa((2*j + 1)*s))/(2*j + 1), j = 0..terms); end proc;
    evalf(exp(-Sum(2^t*pzetamod41(2*t, 50)/t, t = 1..200))); # Vaclav Kotesovec, Jan 13 2021
  • Mathematica
    f[p_] := If[Mod[p, 4] == 1, 1 - 2/p^2, 1]; RealDigits[N[Product[f[Prime[i]], {i, 1, 10^6}], 10], 10, 8][[1]] (* for calculating only the first few terms *)
    (* -------------------------------------------------------------------------- *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z2[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = 2^w * P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z2[4, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
  • PARI
    f(lim,poly=1-'x-'x^2/2)=prodeulerrat(subst(poly,'x,1/'x^2))*prodeuler(p=2,lim, my(pm2=1./p^2); if(p%4==1,1.-2*pm2,1.)/subst(poly,'x,pm2)) \\ Gets 14 digits at lim=1e9; Charles R Greathouse IV, Aug 10 2022

Formula

Equals 2*A065474/A340617.

Extensions

More digits (from the paper by R. J. Mathar) added by Jon E. Schoenfield, Jan 12 2021
More digits from Vaclav Kotesovec, Jan 13 2021
Showing 1-10 of 53 results. Next