cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 110 results. Next

A376590 Second differences of consecutive squarefree numbers (A005117). First differences of A076259.

Original entry on oeis.org

0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 3, -2, 0, 0, -1, 0, 1, -1, 2, -2, 0, 1, -1, 0, 1, -1, 2, -2, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 1, 2, -3, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 2, -2, 3, -2, -1
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2024

Keywords

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
Zeros are A376591, complement A376592.
Sorted positions of first appearances are A376655.
A000040 lists the prime numbers, differences A001223.
A001597 lists perfect-powers, complement A007916.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A333254 lists run-lengths of differences between consecutive primes.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For squarefree numbers: A076259 (first differences), A376591 (inflections and undulations), A376592 (nonzero curvature), A376655 (sorted first positions).

Programs

  • Mathematica
    Differences[Select[Range[100],SquareFreeQ],2]
  • Python
    from math import isqrt
    from sympy import mobius
    def A376590(n):
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        a = iterfun(f,n)
        b = iterfun(lambda x:f(x)+1,a)
        return a+iterfun(lambda x:f(x)+2,b)-(b<<1) # Chai Wah Wu, Oct 02 2024

A376342 Positions of 1's in the run-compression (A376305) of the first differences (A076259) of the squarefree numbers (A005117).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22, 24, 26, 28, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 51, 54, 56, 58, 60, 62, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 124, 126, 128, 130
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with run-compression (A376305):
  1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 2, 1, ...
with ones at (A376342):
  1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22, 24, 26, 28, 30, 32, 34, 36, 38, ...
		

Crossrefs

Before compressing we had A076259.
Positions of 1's in A376305.
The version for nonsquarefree numbers gives positions of ones in A376312.
For prime instead of squarefree numbers we have A376343.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Join@@Position[First /@ Split[Differences[Select[Range[100],SquareFreeQ]]],1]

A005117 Squarefree numbers: numbers that are not divisible by a square greater than 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Keywords

Comments

1 together with the numbers that are products of distinct primes.
Also smallest sequence with the property that a(m)*a(k) is never a square for k != m. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001
Numbers k such that there is only one Abelian group with k elements, the cyclic group of order k (the numbers such that A000688(k) = 1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
Numbers k such that A007913(k) > phi(k). - Benoit Cloitre, Apr 10 2002
a(n) is the smallest m with exactly n squarefree numbers <= m. - Amarnath Murthy, May 21 2002
k is squarefree <=> k divides prime(k)# where prime(k)# = product of first k prime numbers. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 30 2004
Numbers k such that omega(k) = Omega(k) = A072047(k). - Lekraj Beedassy, Jul 11 2006
The LCM of any finite subset is in this sequence. - Lekraj Beedassy, Jul 11 2006
This sequence and the Beatty Pi^2/6 sequence (A059535) are "incestuous": the first 20000 terms are bounded within (-9, 14). - Ed Pegg Jr, Jul 22 2008
Let us introduce a function D(n) = sigma_0(n)/2^(alpha(1) + ... + alpha(r)), sigma_0(n) number of divisors of n (A000005), prime factorization of n = p(1)^alpha(1) * ... * p(r)^alpha(r), alpha(1) + ... + alpha(r) is sequence (A001222). Function D(n) splits the set of positive integers into subsets, according to the value of D(n). Squarefree numbers (A005117) has D(n)=1, other numbers are "deviated" from the squarefree ideal and have 0 < D(n) < 1. For D(n)=1/2 we have A048109, for D(n)=3/4 we have A060687. - Ctibor O. Zizka, Sep 21 2008
Numbers k such that gcd(k,k')=1 where k' is the arithmetic derivative (A003415) of k. - Giorgio Balzarotti, Apr 23 2011
Numbers k such that A007913(k) = core(k) = k. - Franz Vrabec, Aug 27 2011
Numbers k such that sqrt(k) cannot be simplified. - Sean Loughran, Sep 04 2011
Indices m where A057918(m)=0, i.e., positive integers m for which there are no integers k in {1,2,...,m-1} such that k*m is a square. - John W. Layman, Sep 08 2011
It appears that these are numbers j such that Product_{k=1..j} (prime(k) mod j) = 0 (see Maple code). - Gary Detlefs, Dec 07 2011. - This is the same claim as Mohammed Bouayoun's Mar 30 2004 comment above. To see why it holds: Primorial numbers, A002110, a subsequence of this sequence, are never divisible by any nonsquarefree number, A013929, and on the other hand, the index of the greatest prime dividing any n is less than n. Cf. A243291. - Antti Karttunen, Jun 03 2014
Conjecture: For each n=2,3,... there are infinitely many integers b > a(n) such that Sum_{k=1..n} a(k)*b^(k-1) is prime, and the smallest such an integer b does not exceed (n+3)*(n+4). - Zhi-Wei Sun, Mar 26 2013
The probability that a random natural number belongs to the sequence is 6/Pi^2, A059956 (see Cesàro reference). - Giorgio Balzarotti, Nov 21 2013
Booker, Hiary, & Keating give a subexponential algorithm for testing membership in this sequence without factoring. - Charles R Greathouse IV, Jan 29 2014
Because in the factorizations into prime numbers these a(n) (n >= 2) have exponents which are either 0 or 1 one could call the a(n) 'numbers with a fermionic prime number decomposition'. The levels are the prime numbers prime(j), j >= 1, and the occupation numbers (exponents) e(j) are 0 or 1 (like in Pauli's exclusion principle). A 'fermionic state' is then denoted by a sequence with entries 0 or 1, where, except for the zero sequence, trailing zeros are omitted. The zero sequence stands for a(1) = 1. For example a(5) = 6 = 2^1*3^1 is denoted by the 'fermionic state' [1, 1], a(7) = 10 by [1, 0, 1]. Compare with 'fermionic partitions' counted in A000009. - Wolfdieter Lang, May 14 2014
From Vladimir Shevelev, Nov 20 2014: (Start)
The following is an Eratosthenes-type sieve for squarefree numbers. For integers > 1:
1) Remove even numbers, except for 2; the minimal non-removed number is 3.
2) Replace multiples of 3 removed in step 1, and remove multiples of 3 except for 3 itself; the minimal non-removed number is 5.
3) Replace multiples of 5 removed as a result of steps 1 and 2, and remove multiples of 5 except for 5 itself; the minimal non-removed number is 6.
4) Replace multiples of 6 removed as a result of steps 1, 2 and 3 and remove multiples of 6 except for 6 itself; the minimal non-removed number is 7.
5) Repeat using the last minimal non-removed number to sieve from the recovered multiples of previous steps.
Proof. We use induction. Suppose that as a result of the algorithm, we have found all squarefree numbers less than n and no other numbers. If n is squarefree, then the number of its proper divisors d > 1 is even (it is 2^k - 2, where k is the number of its prime divisors), and, by the algorithm, it remains in the sequence. Otherwise, n is removed, since the number of its squarefree divisors > 1 is odd (it is 2^k-1).
(End)
The lexicographically least sequence of integers > 1 such that each entry has an even number of proper divisors occurring in the sequence (that's the sieve restated). - Glen Whitney, Aug 30 2015
0 is nonsquarefree because it is divisible by any square. - Jon Perry, Nov 22 2014, edited by M. F. Hasler, Aug 13 2015
The Heinz numbers of partitions with distinct parts. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} prime(j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] the Heinz number is 2*2*3*7*29 = 2436. The number 30 (= 2*3*5) is in the sequence because it is the Heinz number of the partition [1,2,3]. - Emeric Deutsch, May 21 2015
It is possible for 2 consecutive terms to be even; for example a(258)=422 and a(259)=426. - Thomas Ordowski, Jul 21 2015. [These form a subsequence of A077395 since their product is divisible by 4. - M. F. Hasler, Aug 13 2015]
There are never more than 3 consecutive terms. Runs of 3 terms start at 1, 5, 13, 21, 29, 33, ... (A007675). - Ivan Neretin, Nov 07 2015
a(n) = product of row n in A265668. - Reinhard Zumkeller, Dec 13 2015
Numbers without excess, i.e., numbers k such that A001221(k) = A001222(k). - Juri-Stepan Gerasimov, Sep 05 2016
Numbers k such that b^(phi(k)+1) == b (mod k) for every integer b. - Thomas Ordowski, Oct 09 2016
Boreico shows that the set of square roots of the terms of this sequence is linearly independent over the rationals. - Jason Kimberley, Nov 25 2016 (reference found by Michael Coons).
Numbers k such that A008836(k) = A008683(k). - Enrique Pérez Herrero, Apr 04 2018
The prime zeta function P(s) "has singular points along the real axis for s=1/k where k runs through all positive integers without a square factor". See Wolfram link. - Maleval Francis, Jun 23 2018
Numbers k such that A007947(k) = k. - Kyle Wyonch, Jan 15 2021
The Schnirelmann density of the squarefree numbers is 53/88 (Rogers, 1964). - Amiram Eldar, Mar 12 2021
Comment from Isaac Saffold, Dec 21 2021: (Start)
Numbers k such that all groups of order k have a trivial Frattini subgroup [Dummit and Foote].
Let the group G have order n. If n is squarefree and n > 1, then G is solvable, and thus by Hall's Theorem contains a subgroup H_p of index p for all p | n. Each H_p is maximal in G by order considerations, and the intersection of all the H_p's is trivial. Thus G's Frattini subgroup Phi(G), being the intersection of G's maximal subgroups, must be trivial. If n is not squarefree, the cyclic group of order n has a nontrivial Frattini subgroup. (End)
Numbers for which the squarefree divisors (A206778) and the unitary divisors (A077610) are the same; moreover they are also the set of divisors (A027750). - Bernard Schott, Nov 04 2022
0 = A008683(a(n)) - A008836(a(n)) = A001615(a(n)) - A000203(a(n)). - Torlach Rush, Feb 08 2023
From Robert D. Rosales, May 20 2024: (Start)
Numbers n such that mu(n) != 0, where mu(n) is the Möbius function (A008683).
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = mu(n)*n, where sigma(n) is the sum of divisors function (A000203). (End)
a(n) is the smallest root of x = 1 + Sum_{k=1..n-1} floor(sqrt(x/a(k))) greater than a(n-1). - Yifan Xie, Jul 10 2024
Number k such that A001414(k) = A008472(k). - Torlach Rush, Apr 14 2025
To elaborate on the formula from Greathouse (2018), the maximum of a(n) - floor(n*Pi^2/6 + sqrt(n)/17) is 10 at indices n = 48715, 48716, 48721, and 48760. The maximum is 11, at the same indices, if floor is taken individually for the two addends and the square root. If the value is rounded instead, the maximum is 9 at 10 indices between 48714 and 48765. - M. F. Hasler, Aug 08 2025

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 165, p. 53, Ellipses, Paris, 2008.
  • David S. Dummit and Richard M. Foote, Abstract algebra. Vol. 1999. Englewood Cliffs, NJ: David S.Prentice Hall, 1991.
  • Ivan M. Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 251.
  • Michael Pohst and Hans J. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A013929. Subsequence of A072774 and A209061.
Characteristic function: A008966 (mu(n)^2, where mu = A008683).
Subsequences: A000040, A002110, A235488.
Subsequences: numbers j such that j*a(k) is squarefree where k > 1: A056911 (k = 2), A261034 (k = 3), A274546 (k = 5), A276378 (k = 6).

Programs

  • Haskell
    a005117 n = a005117_list !! (n-1)
    a005117_list = filter ((== 1) . a008966) [1..]
    -- Reinhard Zumkeller, Aug 15 2011, May 10 2011
    
  • Magma
    [ n : n in [1..1000] | IsSquarefree(n) ];
    
  • Maple
    with(numtheory); a := [ ]; for n from 1 to 200 do if issqrfree(n) then a := [ op(a), n ]; fi; od:
    t:= n-> product(ithprime(k),k=1..n): for n from 1 to 113 do if(t(n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 07 2011
    A005117 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if numtheory[issqrfree](a) then return a; end if; end do: end if; end proc:  # R. J. Mathar, Jan 09 2013
  • Mathematica
    Select[ Range[ 113], SquareFreeQ] (* Robert G. Wilson v, Jan 31 2005 *)
    Select[Range[150], Max[Last /@ FactorInteger[ # ]] < 2 &] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
    NextSquareFree[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sf = n + sgn; While[c < Abs[k], While[ ! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[ sgn < 0, sf--, sf++]; c++]; sf + If[ sgn < 0, 1, -1]]; NestList[ NextSquareFree, 1, 70] (* Robert G. Wilson v, Apr 18 2014 *)
    Select[Range[250], MoebiusMu[#] != 0 &] (* Robert D. Rosales, May 20 2024 *)
  • PARI
    bnd = 1000; L = vector(bnd); j = 1; for (i=1,bnd, if(issquarefree(i),L[j]=i; j=j+1)); L
    
  • PARI
    {a(n)= local(m,c); if(n<=1,n==1, c=1; m=1; while( cMichael Somos, Apr 29 2005 */
    
  • PARI
    list(n)=my(v=vectorsmall(n,i,1),u,j); forprime(p=2,sqrtint(n), forstep(i=p^2, n, p^2, v[i]=0)); u=vector(sum(i=1,n,v[i])); for(i=1,n,if(v[i],u[j++]=i)); u \\ Charles R Greathouse IV, Jun 08 2012
    
  • PARI
    for(n=1, 113, if(core(n)==n, print1(n, ", "))); \\ Arkadiusz Wesolowski, Aug 02 2016
    
  • PARI
    S(n) = my(s); forsquarefree(k=1,sqrtint(n),s+=n\k[1]^2*moebius(k)); s;
    a(n) = my(min=1, max=231, k=0, sc=0); if(n >= 144, min=floor(zeta(2)*n - 5*sqrt(n)); max=ceil(zeta(2)*n + 5*sqrt(n))); while(min <= max, k=(min+max)\2; sc=S(k); if(abs(sc-n) <= sqrtint(n), break); if(sc > n, max=k-1, if(sc < n, min=k+1, break))); while(!issquarefree(k), k-=1); while(sc != n, my(j=1); if(sc > n, j = -1); k += j; sc += j; while(!issquarefree(k), k += j)); k; \\ Daniel Suteu, Jul 07 2022
    
  • PARI
    first(n)=my(v=vector(n),i); forsquarefree(k=1,if(n<268293,(33*n+30)\20,(n*Pi^2/6+0.058377*sqrt(n))\1), if(i++>n, return(v)); v[i]=k[1]); v \\ Charles R Greathouse IV, Jan 10 2023
    
  • PARI
    A5117=[1..3]; A005117(n)={if(n>#A5117, my(N=#A5117); A5117=Vec(A5117, max(n+999, N*5\4)); iferr(forsquarefree(k=A5117[N]+1, #A5117*Pi^2\6+sqrtint(#A5117)\17+11, A5117[N++]=k[1]),E,)); A5117[n]} \\ M. F. Hasler, Aug 08 2025
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 2) == n
    print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, Jul 31 2021
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A005117_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(x == 1 for x in factorint(n).values()),count(max(startvalue,1)))
    A005117_list = list(islice(A005117_gen(),20)) # Chai Wah Wu, May 09 2022
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A005117(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 22 2024

Formula

Limit_{n->oo} a(n)/n = Pi^2/6 (see A013661). - Benoit Cloitre, May 23 2002
Equals A039956 UNION A056911. - R. J. Mathar, May 16 2008
A122840(a(n)) <= 1; A010888(a(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
a(n) = A055229(A062838(n)) and a(n) > A055229(m) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010
A008477(a(n)) = 1. - Reinhard Zumkeller, Feb 17 2012
A055653(a(n)) = a(n); A055654(a(n)) = 0. - Reinhard Zumkeller, Mar 11 2012
A008966(a(n)) = 1. - Reinhard Zumkeller, May 26 2012
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
A056170(a(n)) = 0. - Reinhard Zumkeller, Dec 29 2012
A013928(a(n)+1) = n. - Antti Karttunen, Jun 03 2014
A046660(a(n)) = 0. - Reinhard Zumkeller, Nov 29 2015
Equals {1} UNION A000040 UNION A006881 UNION A007304 UNION A046386 UNION A046387 UNION A067885 UNION A123321 UNION A123322 UNION A115343 ... - R. J. Mathar, Nov 05 2016
|a(n) - n*Pi^2/6| < 0.058377*sqrt(n) for n >= 268293; this result can be derived from Cohen, Dress, & El Marraki, see links. - Charles R Greathouse IV, Jan 18 2018
From Amiram Eldar, Jul 07 2021: (Start)
Sum_{n>=1} (-1)^(a(n)+1)/a(n)^2 = 9/Pi^2.
Sum_{k=1..n} 1/a(k) ~ (6/Pi^2) * log(n).
Sum_{k=1..n} (-1)^(a(k)+1)/a(k) ~ (2/Pi^2) * log(n).
(all from Scott, 2006) (End)

A057820 First differences of sequence of consecutive prime powers (A000961).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Labos Elemer, Nov 08 2000

Keywords

Comments

a(n) = 1 iff A000961(n) = A006549(k) for some k. - Reinhard Zumkeller, Aug 25 2002
Also run lengths of distinct terms in A070198. - Reinhard Zumkeller, Mar 01 2012
Does this sequence contain all positive integers? - Gus Wiseman, Oct 09 2024

Examples

			Odd differences arise in pairs in neighborhoods of powers of 2, like {..,2039,2048,2053,..} gives {..,11,5,..}
		

Crossrefs

For perfect-powers (A001597) we have A053289.
For non-perfect-powers (A007916) we have A375706.
Positions of ones are A375734.
Run-compression is A376308.
Run-lengths are A376309.
Sorted positions of first appearances are A376340.
The second (instead of first) differences are A376596, zeros A376597.
Prime-powers:
- terms: A000961 or A246655, complement A024619
- differences: A057820 (this), first appearances A376341
- anti-runs: A373576, A120430, A006549, A373671
Non-prime-powers:
- terms: A361102
- differences: A375708 (ones A375713)
- anti-runs: A373679, A373575, A255346, A373672

Programs

  • Haskell
    a057820_list = zipWith (-) (tail a000961_list) a000961_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Maple
    A057820 := proc(n)
            A000961(n+1)-A000961(n) ;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    Map[Length, Split[Table[Apply[LCM, Range[n]], {n, 1, 150}]]] (* Geoffrey Critzer, May 29 2015 *)
    Join[{1},Differences[Select[Range[500],PrimePowerQ]]] (* Harvey P. Dale, Apr 21 2022 *)
  • PARI
    isA000961(n) = (omega(n) == 1 || n == 1)
    n_prev=1;for(n=2,500,if(isA000961(n),print(n-n_prev);n_prev=n)) \\ Michael B. Porter, Oct 30 2009
    
  • Python
    from sympy import primepi, integer_nthroot
    def A057820(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        r, k = m, f(m)+1
        while r != k: r, k = k, f(k)+1
        return r-m # Chai Wah Wu, Sep 12 2024

Formula

a(n) = A000961(n+1) - A000961(n).

Extensions

Offset corrected and b-file adjusted by Reinhard Zumkeller, Mar 03 2012

A061398 Number of squarefree integers between prime(n) and prime(n+1).

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 0, 2, 1, 1, 3, 2, 1, 1, 1, 3, 0, 3, 2, 0, 3, 1, 3, 4, 0, 1, 2, 0, 2, 6, 2, 2, 1, 5, 0, 2, 3, 2, 1, 3, 0, 6, 0, 2, 0, 7, 8, 1, 0, 2, 3, 0, 3, 3, 3, 3, 0, 2, 1, 1, 5, 7, 2, 0, 1, 9, 2, 4, 0, 0, 4, 3, 2, 2, 2, 2, 5, 2, 4, 6, 0, 5, 0, 4, 1, 3, 4, 1, 1, 2, 6, 4, 1, 4, 2, 2, 7, 0, 8, 4, 4, 3, 2, 1, 2
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Examples

			Between 113 and 127 the 6 squarefree numbers are 114, 115, 118, 119, 122, 123, so a(30)=6.
From _Gus Wiseman_, Nov 06 2024: (Start)
The a(n) squarefree numbers for n = 1..16:
  1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16
  ---------------------------------------------------------------
  .   .   6   10  .   14  .   21  26  30  33  38  42  46  51  55
                      15      22          34  39              57
                                          35                  58
(End)
		

Crossrefs

Cf. A179211. [Reinhard Zumkeller, Jul 05 2010]
Counting all composite numbers (not just squarefree) gives A046933.
The version for nonsquarefree numbers is A061399.
Zeros are A068360.
The version for prime-powers is A080101.
Partial sums are A337030.
The version for non-prime-powers is A368748.
Excluding prime(n+1) from the range gives A373198.
Ones are A377430.
Positives are A377431.
The version for perfect-powers is A377432.
The version for non-perfect-powers is A377433 + 2.
For squarefree numbers (A005117) between primes:
- length is A061398 (this sequence)
- min is A112926
- max is A112925
- sum is A373197
For squarefree numbers between powers of two:
- length is A077643 (except initial terms), partial sums A143658
- min is A372683, difference A373125, indices A372540, firsts of A372475
- max is A372889, difference A373126
- sum is A373123
For primes between powers of two:
- length is A036378
- min is A104080 or A014210, indices A372684 (firsts of A035100)
- max is A014234, difference A013603
- sum is A293697 (except initial terms)

Programs

  • Maple
    p:= 2:
    for n from 1 to 200 do
      q:= nextprime(p);
    A[n]:= nops(select(numtheory:-issqrfree, [$p+1..q-1]));
    p:= q;
    od:
    seq(A[i],i=1..200); # Robert Israel, Jan 06 2017
  • Mathematica
    a[n_] := Count[Range[Prime[n]+1, Prime[n+1]-1], _?SquareFreeQ];
    Array[a, 100] (* Jean-François Alcover, Feb 28 2019 *)
    Count[Range[#[[1]]+1,#[[2]]-1],?(SquareFreeQ[#]&)]&/@Partition[ Prime[ Range[120]],2,1] (* _Harvey P. Dale, Oct 14 2021 *)
  • PARI
    { n=0; q=2; forprime (p=3, prime(1001), a=0; for (i=q+1, p-1, a+=issquarefree(i)); write("b061398.txt", n++, " ", a); q=p ) } \\ Harry J. Smith, Jul 22 2009
    
  • PARI
    a(n) = my(pp=prime(n)+1); sum(k=pp, nextprime(pp)-1, issquarefree(k)); \\ Michel Marcus, Feb 28 2019
    
  • Python
    from math import isqrt
    from sympy import mobius, prime, nextprime
    def A061398(n):
        p = prime(n)
        q = nextprime(p)
        r = isqrt(p-1)+1
        return sum(mobius(k)*((q-1)//k**2) for k in range(r,isqrt(q-1)+1))+sum(mobius(k)*((q-1)//k**2-(p-1)//k**2) for k in range(1,r))-1 # Chai Wah Wu, Jun 01 2024

Formula

a(n) = A013928(A000040(n+1)) - A013928(A000040(n)) - 1. - Robert Israel, Jan 06 2017
a(n) = A373198(n) - 1. - Gus Wiseman, Nov 06 2024

A053797 Lengths of successive gaps between squarefree numbers.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 2, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2000

Keywords

Comments

From Gus Wiseman, Jun 11 2024: (Start)
Also the length of the n-th maximal run of nonsquarefree numbers. These runs begin:
4
8 9
12
16
18
20
24 25
27 28
32
36
40
44 45
48 49 50
(End)

Examples

			The first gap is at 4 and has length 1; the next starts at 8 and has length 2 (since neither 8 nor 9 are squarefree).
		

Crossrefs

Gaps between terms of A005117.
For squarefree runs we have A120992, antiruns A373127 (firsts A373128).
For composite runs we have A176246 (rest of A046933), antiruns A373403.
For prime runs we have A251092 (rest of A175632), antiruns A027833.
Position of first appearance of n is A373199(n).
For antiruns instead of runs we have A373409.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Maple
    SF:= select(numtheory:-issqrfree,[$1..1000]):
    map(`-`,select(`>`,SF[2..-1]-SF[1..-2],1),1); # Robert Israel, Sep 22 2015
  • Mathematica
    ReplaceAll[Differences[Select[Range@384, SquareFreeQ]] - 1, 0 -> Nothing] (* Michael De Vlieger, Sep 22 2015 *)

Extensions

Offset set to 1 by Peter Kagey, Sep 29 2015

A120992 Number of integers in n-th run of squarefree positive integers.

Original entry on oeis.org

3, 3, 2, 3, 1, 1, 3, 1, 3, 3, 3, 3, 2, 1, 1, 1, 3, 2, 3, 3, 2, 3, 2, 3, 1, 1, 3, 1, 3, 3, 3, 3, 2, 2, 1, 3, 2, 3, 3, 2, 1, 1, 2, 3, 1, 1, 3, 1, 2, 3, 3, 3, 2, 3, 1, 1, 3, 2, 3, 3, 3, 3, 2, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 2, 3, 1, 1, 2, 2, 3, 3, 2, 1, 1, 2, 3, 1
Offset: 1

Views

Author

Leroy Quet, Jul 21 2006

Keywords

Comments

The values 1, 2 and 3 occur 309008, 251134 and 439858 times, respectively, in the first 1000000 terms. - Rick L. Shepherd, Jul 25 2006
From Reinhard Zumkeller, Jan 20 2008: (Start)
1 <= a(n) <= 3.
A136742(n) = Product{k=0..a(n)} (A072284(n)+k).
A136743(n) = Sum_{k=0..a(n)} A001221(A072284(n)+k).
(End)
Also the lengths of runs in A243348, differences of the n-th squarefree number and n. - Antti Karttunen, Jun 06 2014

Examples

			The runs of squarefree integers are as follows: (1,2,3), (5,6,7), (10,11), (13,14,15), (17), (19), (21,22,23),...
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if mobius(n)=0 then n else fi end: A:=[0,seq(a(n),n=1..500)]: b:=proc(n) if A[n]-A[n-1]>1 then A[n]-A[n-1]-1 else fi end: seq(b(n),n=2..nops(A)); # Emeric Deutsch, Jul 24 2006
  • Mathematica
    t = {}; cnt = 0; Do[If[SquareFreeQ[n], cnt++, If[cnt > 0, AppendTo[t, cnt]; cnt = 0]], {n, 500}]; t (* T. D. Noe, Mar 19 2013 *)
  • PARI
    n=1; while(n<1000, c=0; while(issquarefree(n), n++; c++); print1(c,", "); while(!issquarefree(n), n++)) \\ Rick L. Shepherd, Jul 25 2006
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define (A120992 n) (if (= n 1) (Aincr_points_of_A243348 n) (- (Aincr_points_of_A243348 n) (Aincr_points_of_A243348 (- n 1)))))
    ;; Using these two auxiliary functions, not submitted separately:
    (define Aincr_points_of_A243348 (COMPOSE -1+ (NONZERO-POS 1 1 Afirst_diffs_of_A243348)))
    (define (Afirst_diffs_of_A243348 n) (if (< n 2) (- n 1) (- (A243348 n) (A243348 (- n 1)))))

Extensions

More terms from Emeric Deutsch and Rick L. Shepherd, Jul 25 2006

A112925 Largest squarefree integer < the n-th prime.

Original entry on oeis.org

1, 2, 3, 6, 10, 11, 15, 17, 22, 26, 30, 35, 39, 42, 46, 51, 58, 59, 66, 70, 71, 78, 82, 87, 95, 97, 102, 106, 107, 111, 123, 130, 134, 138, 146, 149, 155, 161, 166, 170, 178, 179, 190, 191, 195, 197, 210, 222, 226, 227, 231, 238, 239, 249, 255, 262, 267, 269, 274, 278
Offset: 1

Views

Author

Leroy Quet, Oct 06 2005

Keywords

Examples

			6 is the largest squarefree less than the 4th prime, 7. So a(4) = 6.
		

Crossrefs

For prime powers instead of squarefree numbers we have A065514, opposite A345531.
Restriction of A070321 (differences A378085) to the primes; see A378619.
The opposite is A112926, differences A378037.
Subtracting each term from prime(n) gives A240473, opposite A240474.
For nonsquarefree numbers we have A378033, differences A378036, see A378034, A378032.
For perfect powers we have A378035.
First differences are A378038.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013928 counts squarefree numbers up to n - 1.
A013929 lists the nonsquarefree numbers, differences A078147.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A112929 counts squarefree numbers up to prime(n).

Programs

  • Maple
    with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from 1 to p-1 do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[nops(B)] end: seq(a(m),m=1..75); # Emeric Deutsch, Oct 14 2005
  • Mathematica
    With[{k = 120}, Table[SelectFirst[Range[Prime@ n - 1, Prime@ n - Min[Prime@ n - 1, k], -1], SquareFreeQ], {n, 60}]] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    a(n,p=prime(n))=while(!issquarefree(p--),); p \\ Charles R Greathouse IV, Aug 16 2017

Formula

a(n) = prime(n) - A240473(n). - Gus Wiseman, Jan 10 2025

Extensions

More terms from Emeric Deutsch, Oct 14 2005

A068781 Lesser of two consecutive numbers each divisible by a square.

Original entry on oeis.org

8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

Also numbers m such that mu(m)=mu(m+1)=0, where mu is the Moebius-function (A008683); A081221(a(n))>1. - Reinhard Zumkeller, Mar 10 2003
The sequence contains an infinite family of arithmetic progressions like {36a+8}={8,44,80,116,152,188,...} ={4(9a+2)}. {36a+9} provides 2nd nonsquarefree terms. Such AP's can be constructed to any term by solution of a system of linear Diophantine equation. - Labos Elemer, Nov 25 2002
1. 4k^2 + 4k is a member for all k; i.e., 8 times a triangular number is a member. 2. (4k+1) times an odd square - 1 is a member. 3. (4k+3) times odd square is a member. - Amarnath Murthy, Apr 24 2003
The asymptotic density of this sequence is 1 - 2/zeta(2) + Product_{p prime} (1 - 2/p^2) = 1 - 2 * A059956 + A065474 = 0.1067798952... (Matomäki et al., 2016). - Amiram Eldar, Feb 14 2021
Maximum of the n-th maximal anti-run of nonsquarefree numbers (A013929) differing by more than one. For runs instead of anti-runs we have A376164. For squarefree instead of nonsquarefree we have A007674. - Gus Wiseman, Sep 14 2024

Examples

			44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From _Gus Wiseman_, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
  (4,8)
  (9,12,16,18,20,24)
  (25,27)
  (28,32,36,40,44)
  (45,48)
  (49)
  (50,52,54,56,60,63)
  (64,68,72,75)
  (76,80)
  (81,84,88,90,92,96,98)
  (99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
		

Crossrefs

Subsequence of A261869.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.

Programs

  • Haskell
    a068781 n = a068781_list !! (n-1)
    a068781_list = filter ((== 0) . a261869) [1..]
    -- Reinhard Zumkeller, Sep 04 2015
    
  • Mathematica
    Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
    f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
    Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
  • PARI
    isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021

Formula

A261869(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2015

A375706 First differences of non-perfect-powers.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The 5th non-perfect-power is 7, and the 6th is 10, so a(5) = 3.
		

Crossrefs

For prime-powers (A000961) we have A057820.
For perfect powers (A001597) we have A053289.
For nonprime numbers (A002808) we have A073783.
For squarefree numbers (A005117) we have A076259.
First differences of A007916.
For nonsquarefree numbers (A013929) we have A078147.
For non-prime-powers (A024619) we have A375708.
Positions of 1s are A375740, complement A375714.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Differences[Select[Range[100],radQ]]
  • PARI
    up_to = 112;
    A375706list(up_to) = { my(v=vector(up_to), pk=2, k=2, i=0); while(i<#v, k++; if(!ispower(k), i++; v[i] = k-pk; pk = k)); (v); };
    v375706 = A375706list(up_to);
    A375706(n) = v375706[n]; \\ Antti Karttunen, Jan 19 2025
  • Python
    from itertools import count
    from sympy import mobius, integer_nthroot, perfect_power
    def A375706(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return next(i for i in count(m+1) if not perfect_power(i))-m # Chai Wah Wu, Sep 09 2024
    

Formula

a(n) = A007916(n+1) - A007916(n).

Extensions

More terms from Antti Karttunen, Jan 19 2025
Showing 1-10 of 110 results. Next