cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 70 results. Next

A378038 First differences of A112925 = greatest squarefree number < prime(n).

Original entry on oeis.org

1, 1, 3, 4, 1, 4, 2, 5, 4, 4, 5, 4, 3, 4, 5, 7, 1, 7, 4, 1, 7, 4, 5, 8, 2, 5, 4, 1, 4, 12, 7, 4, 4, 8, 3, 6, 6, 5, 4, 8, 1, 11, 1, 4, 2, 13, 12, 4, 1, 4, 7, 1, 10, 6, 7, 5, 2, 5, 4, 4, 9, 14, 5, 1, 3, 16, 5, 11, 1, 2, 9, 8, 5, 6, 5, 4, 9, 4, 8, 11, 1, 11, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2024

Keywords

Crossrefs

First differences of A112925, restriction of A070321, differences A378085.
For prime powers we have A377781, opposite A377703.
The nonsquarefree opposite is A377784 (differences of A377783), restriction of A378039.
The nonsquarefree version is A378034, first differences of A378032.
The opposite is A378037, differences of A112926.
The unrestricted opposite is A378087, differences of A067535.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,Prime[n]-1,!SquareFreeQ[#]&],{n,100}]]

A061398 Number of squarefree integers between prime(n) and prime(n+1).

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 0, 2, 1, 1, 3, 2, 1, 1, 1, 3, 0, 3, 2, 0, 3, 1, 3, 4, 0, 1, 2, 0, 2, 6, 2, 2, 1, 5, 0, 2, 3, 2, 1, 3, 0, 6, 0, 2, 0, 7, 8, 1, 0, 2, 3, 0, 3, 3, 3, 3, 0, 2, 1, 1, 5, 7, 2, 0, 1, 9, 2, 4, 0, 0, 4, 3, 2, 2, 2, 2, 5, 2, 4, 6, 0, 5, 0, 4, 1, 3, 4, 1, 1, 2, 6, 4, 1, 4, 2, 2, 7, 0, 8, 4, 4, 3, 2, 1, 2
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Examples

			Between 113 and 127 the 6 squarefree numbers are 114, 115, 118, 119, 122, 123, so a(30)=6.
From _Gus Wiseman_, Nov 06 2024: (Start)
The a(n) squarefree numbers for n = 1..16:
  1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16
  ---------------------------------------------------------------
  .   .   6   10  .   14  .   21  26  30  33  38  42  46  51  55
                      15      22          34  39              57
                                          35                  58
(End)
		

Crossrefs

Cf. A179211. [Reinhard Zumkeller, Jul 05 2010]
Counting all composite numbers (not just squarefree) gives A046933.
The version for nonsquarefree numbers is A061399.
Zeros are A068360.
The version for prime-powers is A080101.
Partial sums are A337030.
The version for non-prime-powers is A368748.
Excluding prime(n+1) from the range gives A373198.
Ones are A377430.
Positives are A377431.
The version for perfect-powers is A377432.
The version for non-perfect-powers is A377433 + 2.
For squarefree numbers (A005117) between primes:
- length is A061398 (this sequence)
- min is A112926
- max is A112925
- sum is A373197
For squarefree numbers between powers of two:
- length is A077643 (except initial terms), partial sums A143658
- min is A372683, difference A373125, indices A372540, firsts of A372475
- max is A372889, difference A373126
- sum is A373123
For primes between powers of two:
- length is A036378
- min is A104080 or A014210, indices A372684 (firsts of A035100)
- max is A014234, difference A013603
- sum is A293697 (except initial terms)

Programs

  • Maple
    p:= 2:
    for n from 1 to 200 do
      q:= nextprime(p);
    A[n]:= nops(select(numtheory:-issqrfree, [$p+1..q-1]));
    p:= q;
    od:
    seq(A[i],i=1..200); # Robert Israel, Jan 06 2017
  • Mathematica
    a[n_] := Count[Range[Prime[n]+1, Prime[n+1]-1], _?SquareFreeQ];
    Array[a, 100] (* Jean-François Alcover, Feb 28 2019 *)
    Count[Range[#[[1]]+1,#[[2]]-1],?(SquareFreeQ[#]&)]&/@Partition[ Prime[ Range[120]],2,1] (* _Harvey P. Dale, Oct 14 2021 *)
  • PARI
    { n=0; q=2; forprime (p=3, prime(1001), a=0; for (i=q+1, p-1, a+=issquarefree(i)); write("b061398.txt", n++, " ", a); q=p ) } \\ Harry J. Smith, Jul 22 2009
    
  • PARI
    a(n) = my(pp=prime(n)+1); sum(k=pp, nextprime(pp)-1, issquarefree(k)); \\ Michel Marcus, Feb 28 2019
    
  • Python
    from math import isqrt
    from sympy import mobius, prime, nextprime
    def A061398(n):
        p = prime(n)
        q = nextprime(p)
        r = isqrt(p-1)+1
        return sum(mobius(k)*((q-1)//k**2) for k in range(r,isqrt(q-1)+1))+sum(mobius(k)*((q-1)//k**2-(p-1)//k**2) for k in range(1,r))-1 # Chai Wah Wu, Jun 01 2024

Formula

a(n) = A013928(A000040(n+1)) - A013928(A000040(n)) - 1. - Robert Israel, Jan 06 2017
a(n) = A373198(n) - 1. - Gus Wiseman, Nov 06 2024

A112926 Smallest squarefree integer > the n-th prime.

Original entry on oeis.org

3, 5, 6, 10, 13, 14, 19, 21, 26, 30, 33, 38, 42, 46, 51, 55, 61, 62, 69, 73, 74, 82, 85, 91, 101, 102, 105, 109, 110, 114, 129, 133, 138, 141, 151, 154, 158, 165, 170, 174, 181, 182, 193, 194, 199, 201, 213, 226, 229, 230, 235, 241, 246, 253, 258, 265, 271, 273
Offset: 1

Views

Author

Leroy Quet, Oct 06 2005

Keywords

Examples

			10 is the smallest squarefree number greater than the 4th prime, 7. So a(4) = 10.
From _Gus Wiseman_, Dec 07 2024: (Start)
The first number line below shows the squarefree numbers. The second shows the primes:
--1--2--3-----5--6--7-------10-11----13-14-15----17----19----21-22-23-------26--
=====2==3=====5=====7==========11====13==========17====19==========23===========
(End)
		

Crossrefs

Restriction of A067535, differences A378087.
The unrestricted opposite is A070321, differences A378085.
The opposite is A112925, differences A378038.
Subtracting prime(n) from each term gives A240474, opposite A240473.
For nonsquarefree we have A377783, restriction of A120327.
The nonsquarefree differences are A377784, restriction of A378039.
First differences are A378037.
For perfect power we have A378249, A378617, A378250, A378251.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Maple
    with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from p+1 to p+20 do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[1] end: seq(a(m),m=1..75); # Emeric Deutsch, Oct 10 2005
  • Mathematica
    Do[k = Prime[n] + 1; While[ !SquareFreeQ[k], k++ ]; Print[k], {n, 1, 100}] (* Ryan Propper, Oct 10 2005 *)
    With[{k = 120}, Table[SelectFirst[Range[Prime@ n + 1, Prime@ n + k], SquareFreeQ], {n, 58}]] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    a(n,p=prime(n))=while(!issquarefree(p++),); p \\ Charles R Greathouse IV, Aug 16 2017

Formula

a(n) = prime(n) + A240474(n). - Gus Wiseman, Dec 07 2024

Extensions

More terms from Ryan Propper and Emeric Deutsch, Oct 10 2005

A345531 Smallest prime power greater than the n-th prime.

Original entry on oeis.org

3, 4, 7, 8, 13, 16, 19, 23, 25, 31, 32, 41, 43, 47, 49, 59, 61, 64, 71, 73, 79, 81, 89, 97, 101, 103, 107, 109, 113, 121, 128, 137, 139, 149, 151, 157, 163, 167, 169, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 256, 263, 269, 271, 277
Offset: 1

Views

Author

Dario T. de Castro, Jun 20 2021

Keywords

Comments

Take the family of correlated prime-indexed conjectures appearing in A343249 - A343253, in which an alternative formula for the p-adic order of positive integers is proposed. There, the general p-indexed conjecture says that v_p(n), the p-adic order of n, is given by the formula: v_p(n) = log_p(n / L_p(k0, n)), where L_p(k0, n) is the lowest common denominator of the elements of the set S_p(k0, n) = {(1/n)*binomial(n, k), with 0 < k <= k0 such that k is not divisible by p}. Evidence suggests that the primality of p is a necessary condition in this general conjecture. So, if a composite number q is used instead of a prime p in the proposed formula for the p-adic (now, q-adic) order of n, the first counterexample (failure) is expected to occur for n = q * a(i), where i is the index of the smallest prime that divides q.
The prime-power a(n) is at most the next prime, so this sequence is strictly increasing. See also A366833. - Gus Wiseman, Nov 06 2024

Examples

			a(4) = 8 because the fourth prime number is 7, and the least power of a prime which is greater than 7 is 2^3 = 8.
		

Crossrefs

Starting with n instead of prime(n): A000015, A031218, A377468, A377780, A377782.
Opposite (greatest prime-power less than): A065514, A377289, A377781.
For squarefree instead of prime-power: A112926, opposite A112925.
The difference from prime(n) is A377281.
The prime terms have indices A377286(n) - 1.
First differences are A377703.
A version for perfect-powers is A378249.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 and A361102 list the non-prime-powers, differences A375735.

Programs

  • Maple
    f:= proc(n) local p,x;
      p:= ithprime(n);
      for x from p+1 do
        if nops(numtheory:-factorset(x)) = 1 then return x fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 25 2024
  • Mathematica
    a[i_]:= Module[{j, k, N = 0, tab={}}, tab = Sort[Drop[DeleteDuplicates[Flatten[Table[ If[Prime[j]^k > Prime[i], Prime[j]^k], {j, 1, i+1}, {k, 1, Floor[Log[Prime[j], Prime[i+1]]]}]]], 1]]; N = Take[tab, 1][[1]]; N];
    tabseq = Table[a[i],{i, 1, 100}];
    (* second program *)
    Table[NestWhile[#+1&,Prime[n]+1, Not@*PrimePowerQ],{n,100}] (* Gus Wiseman, Nov 06 2024 *)
  • PARI
    A000015(n) = for(k=n,oo,if((1==k)||isprimepower(k),return(k)));
    A345531(n) = A000015(1+prime(n)); \\ Antti Karttunen, Jul 19 2021
    
  • Python
    from itertools import count
    from sympy import prime, factorint
    def A345531(n): return next(filter(lambda m:len(factorint(m))<=1, count(prime(n)+1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(1+A000040(n)). - Antti Karttunen, Jul 19 2021
a(n) = A000015(A008864(n)). - Omar E. Pol, Oct 27 2021

A061399 Number of nonsquarefree integers between primes prime(n) and prime(n+1).

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 1, 1, 4, 0, 2, 1, 0, 2, 4, 2, 1, 2, 1, 1, 2, 2, 2, 3, 3, 0, 1, 1, 1, 7, 1, 3, 0, 4, 1, 3, 2, 1, 4, 2, 1, 3, 1, 1, 1, 4, 3, 2, 1, 1, 2, 1, 6, 2, 2, 2, 1, 3, 2, 0, 4, 6, 1, 1, 2, 4, 3, 5, 1, 3, 1, 4, 3, 3, 1, 3, 2, 1, 3, 3, 1, 4, 1, 1, 2, 2, 3, 2, 0, 1, 5, 3, 2, 3, 1, 3, 4, 1, 9, 1, 5, 2, 3, 0, 3
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Examples

			Between 113 and 127 the 7 numbers which are not squarefree are {116,117,120,121,124,125,126}, so a(30)=7.
From _Gus Wiseman_, Dec 07 2024: (Start)
The a(n) nonsquarefree numbers for n = 1..15:
   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ----------------------------------------------------------
   .   4   .   8  12  16  18  20  24   .  32  40   .  44  48
               9                  25      36          45  49
                                  27                      50
                                  28                      52
(End)
		

Crossrefs

Zeros are A068361.
First differences of A378086, restriction of A057627 to the primes.
Other classes (instead of nonsquarefree):
- For composite we have A046933, first differences of A065890.
- For squarefree see A061398, A068360, A071403, A373197, A373198, A377431.
- For prime power we have A080101.
- For non prime power we have A368748, see A378616.
- For perfect power we have A377432, zeros A377436.
- For non perfect power we have A377433, A029707.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A120327 gives the least nonsquarefree number >= n.

Programs

A070321 Greatest squarefree number <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 7, 7, 10, 11, 11, 13, 14, 15, 15, 17, 17, 19, 19, 21, 22, 23, 23, 23, 26, 26, 26, 29, 30, 31, 31, 33, 34, 35, 35, 37, 38, 39, 39, 41, 42, 43, 43, 43, 46, 47, 47, 47, 47, 51, 51, 53, 53, 55, 55, 57, 58, 59, 59, 61, 62, 62, 62, 65, 66, 67, 67, 69, 70, 71, 71
Offset: 1

Views

Author

Benoit Cloitre, May 11 2002

Keywords

Comments

a(n) = Max( core(k) : k=1,2,3,...,n ) where core(x) is the squarefree part of x (the smallest integer such that x*core(x) is a square).

Examples

			From _Gus Wiseman_, Dec 10 2024: (Start)
The squarefree numbers <= n are the following columns, with maxima a(n):
  1  2  3  3  5  6  7  7  7  10  11  11  13  14  15  15
     1  2  2  3  5  6  6  6  7   10  10  11  13  14  14
        1  1  2  3  5  5  5  6   7   7   10  11  13  13
              1  2  3  3  3  5   6   6   7   10  11  11
                 1  2  2  2  3   5   5   6   7   10  10
                    1  1  1  2   3   3   5   6   7   7
                             1   2   2   3   5   6   6
                                 1   1   2   3   5   5
                                         1   2   3   3
                                             1   2   2
                                                 1   1
(End)
		

Crossrefs

The distinct terms are A005117 (the squarefree numbers).
The opposite version is A067535, differences A378087.
The run-lengths are A076259.
Restriction to the primes is A112925; see A378038, A112926, A378037.
For nonsquarefree we have A378033; see A120327, A378036, A378032, A377783.
First differences are A378085.
Subtracting each term from n gives A378619.
A013929 lists the nonsquarefree numbers, differences A078147.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Maple
    A070321 := proc(n)
        local a;
        for a from n by -1 do
            if issqrfree(a) then
                return a;
            end if;
        end do:
    end proc:
    seq(A070321(n),n=1..100) ; # R. J. Mathar, May 25 2023
  • Mathematica
    a[n_] :=For[ k = n, True, k--, If[ SquareFreeQ[k], Return[k]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 27 2013 *)
    gsfn[n_]:=Module[{k=n},While[!SquareFreeQ[k],k--];k]; Array[gsfn,80] (* Harvey P. Dale, Mar 27 2013 *)
  • PARI
    a(n) = while (! issquarefree(n), n--); n; \\ Michel Marcus, Mar 18 2017
    
  • Python
    from itertools import count
    from sympy import factorint
    def A070321(n): return next(m for m in count(n,-1) if max(factorint(m).values(),default=0)<=1) # Chai Wah Wu, Dec 04 2024

Formula

a(n) = n - o(n^(1/5)) by a result of Pandey. - Charles R Greathouse IV, Dec 04 2024
a(n) = A005117(A013928(n+1)). - Ridouane Oudra, Jul 26 2025

Extensions

New description from Reinhard Zumkeller, Oct 03 2002

A065514 Largest power of a prime < prime(n).

Original entry on oeis.org

1, 2, 4, 5, 9, 11, 16, 17, 19, 27, 29, 32, 37, 41, 43, 49, 53, 59, 64, 67, 71, 73, 81, 83, 89, 97, 101, 103, 107, 109, 125, 128, 131, 137, 139, 149, 151, 157, 163, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 243, 256, 257, 263, 269, 271
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 27 2001

Keywords

Crossrefs

Starting with n instead of prime(n) gives A031218 (A377282, A377782).
The squarefree version is A112925 (A070321, A378038).
The opposite squarefree version is A112926 (A378037, restriction of A067535).
Difference from prime(n) is A377289 (restriction of A276781, opposite A377281).
First differences are A377781.
The nonsquarefree version is A378032 (A377783 (restriction of A378033), A378034, A378040).
The perfect power version is A378035.
A000015 gives the least prime power >= n, differences A377780.
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A345531 gives the least prime power > prime(n), differences A377703.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057, A377286.

Programs

  • Mathematica
    lpp[n_]:=Module[{k=n-1},While[!PrimePowerQ[k],k--];k]; Join[{1},Table[ lpp[ n],{n,Prime[Range[2,60]]}]] (* Harvey P. Dale, Nov 24 2018 *)
  • Python
    from sympy import factorint, prime
    def A065514(n): return next(filter(lambda m:len(factorint(m))<=1, range(prime(n)-1,0,-1))) # Chai Wah Wu, Oct 25 2024

Extensions

Name edited (1 is technically not a prime power even though it is a power of a prime) by Gus Wiseman, Dec 03 2024.

A120327 Smallest nonsquarefree number >= n.

Original entry on oeis.org

4, 4, 4, 4, 8, 8, 8, 8, 9, 12, 12, 12, 16, 16, 16, 16, 18, 18, 20, 20, 24, 24, 24, 24, 25, 27, 27, 28, 32, 32, 32, 32, 36, 36, 36, 36, 40, 40, 40, 40, 44, 44, 44, 44, 45, 48, 48, 48, 49, 50, 52, 52, 54, 54, 56, 56, 60, 60, 60, 60, 63, 63, 63, 64, 68, 68, 68, 68, 72, 72, 72, 72
Offset: 1

Views

Author

Zak Seidov, Aug 16 2006

Keywords

Crossrefs

For squarefree instead of nonsquarefree we have A067535, differences A378087.
The opposite for squarefree is A070321, differences A378085.
The run-lengths are A078147 if we prepend 4, differences A376593.
The restriction to primes is A377783 (union A378040), differences A377784.
The opposite is A378033 (differences A378036), for prime powers A031218.
First differences are A378039 if we assume that a(1) = 1.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Table[NestWhile[ #+1&,n,SquareFreeQ],{n,100}] (* simplified by Harvey P. Dale, Apr 08 2014 *)

A373198 Number of squarefree numbers from prime(n) to prime(n+1) - 1.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 1, 3, 2, 2, 4, 3, 2, 2, 2, 4, 1, 4, 3, 1, 4, 2, 4, 5, 1, 2, 3, 1, 3, 7, 3, 3, 2, 6, 1, 3, 4, 3, 2, 4, 1, 7, 1, 3, 1, 8, 9, 2, 1, 3, 4, 1, 4, 4, 4, 4, 1, 3, 2, 2, 6, 8, 3, 1, 2, 10, 3, 5, 1, 1, 5, 4, 3, 3, 3, 3, 6, 3, 5, 7, 1, 6, 1, 5, 2, 4, 5
Offset: 1

Views

Author

Gus Wiseman, May 29 2024

Keywords

Examples

			This is the sequence of row-lengths of A005117 treated as a triangle with row-sums A373197:
   2
   3
   5   6
   7  10
  11
  13  14  15
  17
  19  21  22
  23  26
  29  30
  31  33  34  35
  37  38  39
  41  42
  43  46
  47  51
  53  55  57  58
		

Crossrefs

Counting all numbers (not just squarefree) gives A001223, sum A371201.
For composite instead of squarefree we have A046933.
For squarefree numbers (A005117) between primes:
- sum is A373197
- length is A373198 (this sequence) = A061398 - 1
- min is A000040
- max is A112925, opposite A112926
For squarefree numbers between powers of two:
- sum is A373123
- length is A077643, partial sums A143658
- min is A372683, delta A373125, indices A372540, firsts of A372475
- max is A372889, delta A373126
For primes between powers of two:
- sum is A293697 (except initial terms)
- length is A036378
- min is A104080 or A014210, indices A372684 (firsts of A035100)
- max is A014234, delta A013603
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Length[Select[Range[Prime[n],Prime[n+1]-1],SquareFreeQ]],{n,100}]
  • Python
    from math import isqrt
    from sympy import prime, nextprime, mobius
    def A373198(n):
        p = prime(n)
        q = nextprime(p)
        r = isqrt(p-1)+1
        return sum(mobius(k)*((q-1)//k**2) for k in range(r,isqrt(q-1)+1))+sum(mobius(k)*((q-1)//k**2-(p-1)//k**2) for k in range(1,r)) # Chai Wah Wu, Jun 01 2024

Formula

a(n) = A061398(n) + 1.

A077643 Number of squarefree integers in closed interval [2^n, -1 + 2*2^n], i.e., among 2^n consecutive numbers beginning with 2^n.

Original entry on oeis.org

1, 2, 3, 5, 9, 19, 39, 79, 157, 310, 621, 1246, 2491, 4980, 9958, 19924, 39844, 79672, 159365, 318736, 637457, 1274916, 2549816, 5099651, 10199363, 20398663, 40797299, 81594571, 163189087, 326378438, 652756861, 1305513511, 2611026987, 5222053970, 10444108084
Offset: 0

Views

Author

Labos Elemer, Nov 14 2002

Keywords

Comments

Number of squarefree numbers with binary expansion of length n, or with n bits. The sum of these numbers is given by A373123. - Gus Wiseman, Jun 02 2024

Examples

			For n=4: among the 16 numbers of {16, ..., 31}, nine are squarefree [17, 19, 21, 22, 23, 26, 29, 30, 31], so a(4) = 9.
		

Crossrefs

Partial sums (except first term) are A143658.
Run-lengths of A372475.
The minimum is A372683, delta A373125, indices A372540.
The maximum is A372889 (except at n=1), delta A373126, indices A143658.
Row-sums are A373123.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives nonempty lengths of exclusive gaps between squarefree numbers.
A029837 counts bits, row-lengths of A030190 and A030308.
For primes between powers of 2:
- sum A293697
- length A036378 or A162145
- min A104080 or A014210, delta A092131, indices A372684
- max A014234, delta A013603, indices A007053
For squarefree numbers between primes:
- sum A373197
- length A373198 = A061398 - 1
- min A000040
- max A112925 (delta A240473), opposite A112926 (delta A240474)
Cf. A010036, A029931, A035100, A049093-A049096, A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Apply[Plus, Table[Abs[MoebiusMu[2^w+j]], {j, 0, 2^w-1}]], {w, 0, 15}]
    (* second program *)
    Length/@Split[IntegerLength[Select[Range[10000],SquareFreeQ],2]]//Most (* Gus Wiseman, Jun 02 2024 *)
  • PARI
    { a(n) = sum(m=1,sqrtint(2^(n+1)-1), moebius(m) * ((2^(n+1)-1)\m^2 - (2^n-1)\m^2) ) } \\ Max Alekseyev, Oct 18 2008

Formula

a(n) = Sum_{j=0..-1+2^n} abs(mu(2^n + j)).
a(n)/2^n approaches 1/zeta(2), so limiting sequence is floor(2^n/zeta(2)), n >= 0. - Wouter Meeussen, May 25 2003

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 12 2003
More terms from Wouter Meeussen, May 25 2003
a(25)-a(32) from Max Alekseyev, Oct 18 2008
a(33)-a(34) from Amiram Eldar, Jul 17 2024
Showing 1-10 of 70 results. Next