cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 2010 results. Next

A013929 Numbers that are not squarefree. Numbers that are divisible by a square greater than 1. The complement of A005117.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160
Offset: 1

Views

Author

Keywords

Comments

Sometimes misnamed squareful numbers, but officially those are given by A001694.
This is different from the sequence of numbers k such that A007913(k) < phi(k). The two sequences differ at the values: 420, 660, 780, 840, 1320, 1560, 4620, 5460, 7140, ..., which is essentially A070237. - Ant King, Dec 16 2005
Numbers k such that Sum_{d|k} (d/phi(d))*mu(k/d) = 0. - Benoit Cloitre, Apr 28 2002
Also, k with at least one x < k such that A007913(x) = A007913(k). - Benoit Cloitre, Apr 28 2002
Numbers k for which there exists a partition into two parts p and q such that p + q = k and p*q is a multiple of k. - Amarnath Murthy, May 30 2003
Numbers k such that there is a solution 0 < x < k to x^2 == 0 (mod k). - Franz Vrabec, Aug 13 2005
Numbers k such that moebius(k) = 0.
a(n) = k such that phi(k)/k = phi(m)/m for some m < k. - Artur Jasinski, Nov 05 2008
Appears to be numbers such that when a column with index equal to a(n) in A051731 is deleted, there is no impact on the result in the first column of A054525. - Mats Granvik, Feb 06 2009
Numbers k such that the number of prime divisors of (k+1) is less than the number of nonprime divisors of (k+1). - Juri-Stepan Gerasimov, Nov 10 2009
Orders for which at least one non-cyclic finite abelian group exists: A000688(a(n)) > 1. This follows from the fact that not all exponents in the prime factorization of a(n) are 1 (moebius(a(n)) = 0). The number of such groups of order a(n) is A192005(n) = A000688(a(n)) - 1. - Wolfdieter Lang, Jul 29 2011
Subsequence of A193166; A192280(a(n)) = 0. - Reinhard Zumkeller, Aug 26 2011
It appears that terms are the numbers m such that Product_{k=1..m} (prime(k) mod m) <> 0. See Maple code. - Gary Detlefs, Dec 07 2011
A008477(a(n)) > 1. - Reinhard Zumkeller, Feb 17 2012
A057918(a(n)) > 0. - Reinhard Zumkeller, Mar 27 2012
A056170(a(n)) > 0. - Reinhard Zumkeller, Dec 29 2012
Numbers k such that A001221(k) != A001222(k). - Felix Fröhlich, Aug 13 2014
Numbers k such that A001222(k) > A001221(k), since in this case at least one prime factor of k occurs more than once, which implies that k is divisible by at least one perfect square > 1. - Carlos Eduardo Olivieri, Aug 02 2015
Lexicographically least sequence such that each term has a positive even number of proper divisors not occurring in the sequence, cf. the sieve characterization of A005117. - Glen Whitney, Aug 30 2015
There are arbitrarily long runs of consecutive terms. Record runs start at 4, 8, 48, 242, ... (A045882). - Ivan Neretin, Nov 07 2015
A number k is a term if 0 < min(A000010(k) + A023900(k), A000010(k) - A023900(k)). - Torlach Rush, Feb 22 2018
Every squareful number > 1 is nonsquarefree, but the converse is false and the nonsquarefree numbers that are not squareful (see first comment) are in A332785. - Bernard Schott, Apr 11 2021
Integers m where at least one k < m exists such that m divides k^m. - Richard R. Forberg, Jul 31 2021
Consider the Diophantine equation S(x,y) = (x+y) + (x-y) + (x*y) + (x/y) = z, when x and y are both positive integers with y | x. Then, there is a solution (x,y) iff z is a term of this sequence; in this case, if x = K*y, then z = S(K*y,y) = K*(y+1)^2 (see A351381, link and references Perelman); example: S(12,4) = 75 = a(28). The number of solutions for S(x,y) = a(n) is A353282(n). - Bernard Schott, Mar 29 2022
For each positive integer m, the number of unitary divisors of m = the number of squarefree divisors of m (see A034444); but only for the terms of this sequence does the set of unitary divisors differ from the set of squarefree divisors. Example: the set of unitary divisors of 20 is {1, 4, 5, 20}, while the set of squarefree divisors of 20 is {1, 2, 5, 10}. - Bernard Schott, Oct 15 2022

Examples

			For the terms up to 20, we compute the squares of primes up to floor(sqrt(20)) = 4. Those squares are 4 and 9. For every such square s, put the terms s*k^2 for k = 1 to floor(20 / s). This gives after sorting and removing duplicates the list 4, 8, 9, 12, 16, 18, 20. - _David A. Corneth_, Oct 25 2017
		

References

  • I. Perelman, L'Algèbre récréative, Deux nombres et quatre opérations, Editions en langues étrangères, Moscou, 1959, pp. 101-102.
  • Ya. I. Perelman, Algebra can be fun, Two numbers and four operations, Mir Publishers Moscow, 1979, pp. 131-132.

Crossrefs

Complement of A005117. Subsequences: A130897, A190641, A332785.
Partitions into: A114374, A256012.

Programs

  • Haskell
    a013929 n = a013929_list !! (n-1)
    a013929_list = filter ((== 0) . a008966) [1..]
    -- Reinhard Zumkeller, Apr 22 2012
    
  • Magma
    [ n : n in [1..1000] | not IsSquarefree(n) ];
    
  • Maple
    a := n -> `if`(numtheory[mobius](n)=0,n,NULL); seq(a(i),i=1..160); # Peter Luschny, May 04 2009
    t:= n-> product(ithprime(k),k=1..n): for n from 1 to 160 do (if t(n) mod n <>0) then print(n) fi od; # Gary Detlefs, Dec 07 2011
    with(NumberTheory): isQuadrateful := n -> irem(Radical(n), n) <> 0:
    select(isQuadrateful, [`$`(1..160)]);  # Peter Luschny, Jul 12 2022
  • Mathematica
    Union[ Flatten[ Table[ n i^2, {i, 2, 20}, {n, 1, 400/i^2} ] ] ]
    Select[ Range[2, 160], (Union[Last /@ FactorInteger[ # ]][[ -1]] > 1) == True &] (* Robert G. Wilson v, Oct 11 2005 *)
    Cases[Range[160], n_ /; !SquareFreeQ[n]] (* Jean-François Alcover, Mar 21 2011 *)
    Select[Range@160, ! SquareFreeQ[#] &] (* Robert G. Wilson v, Jul 21 2012 *)
    Select[Range@160, PrimeOmega[#] > PrimeNu[#] &] (* Carlos Eduardo Olivieri, Aug 02 2015 *)
    Select[Range[200], MoebiusMu[#] == 0 &] (* Alonso del Arte, Nov 07 2015 *)
  • PARI
    {a(n)= local(m,c); if(n<=1,4*(n==1), c=1; m=4; while( cMichael Somos, Apr 29 2005 */
    
  • PARI
    for(n=1, 1e3, if(omega(n)!=bigomega(n), print1(n, ", "))) \\ Felix Fröhlich, Aug 13 2014
    
  • PARI
    upto(n)=my(res = List()); forprime(p = 2, sqrtint(n), for(k = 1, n \ p^2, listput(res, k * p^2))); listsort(res, 1); res \\ David A. Corneth, Oct 25 2017
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 2) != n
    print(list(filter(ok, range(1, 161)))) # Michael S. Branicky, Apr 08 2021
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A013929(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 20 2024

Formula

A008966(a(n)) = 0. - Reinhard Zumkeller, Apr 22 2012
Sum_{n>=1} 1/a(n)^s = (zeta(s)*(zeta(2*s)-1))/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
a(n) ~ n/k, where k = 1 - 1/zeta(2) = 1 - 6/Pi^2 = A229099. - Charles R Greathouse IV, Sep 13 2013
A001222(a(n)) > A001221(a(n)). - Carlos Eduardo Olivieri, Aug 02 2015
phi(a(n)) > A003958(a(n)). - Juri-Stepan Gerasimov, Apr 09 2019

Extensions

More terms from Erich Friedman
More terms from Franz Vrabec, Aug 13 2005

A076259 Gaps between squarefree numbers: a(n) = A005117(n+1) - A005117(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 4, 2, 2, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 4, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 2, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 03 2002

Keywords

Comments

This sequence is unbounded, as a simple consequence of the Chinese remainder theorem. - Thomas Ordowski, Jul 22 2015
Conjecture: lim sup_{n->oo} a(n)/log(A005117(n)) = 1/2. - Thomas Ordowski, Jul 23 2015 [Note: this conjecture is equivalent to lim sup a(n)/log n = 1/2. - Charles R Greathouse IV, Dec 05 2024]
a(n) = 1 infinitely often since the density of the squarefree numbers, 6/Pi^2, is greater than 1/2. In particular, at least 2 - Pi^2/6 = 35.5...% of the terms are 1. - Charles R Greathouse IV, Jul 23 2015
From Amiram Eldar, Mar 09 2021: (Start)
The asymptotic density of the occurrences of 1 in this sequence is density(A007674)/density(A005117) = A065474/A059956 = 0.530711... (A065469).
The asymptotic density of the occurrences of 2 in this sequence is (density(A069977)-density(A007675))/density(A005117) = (A065474-A206256)/A059956 = 0.324294... (End)

Examples

			As 24 = 3*2^3 and 25 = 5^2, the next squarefree number greater A005117(16) = 23 is A005117(17) = 26, therefore a(16) = 26-23 = 3.
		

Crossrefs

Programs

  • Haskell
    a076259 n = a076259_list !! (n-1)
    a076259_list = zipWith (-) (tail a005117_list) a005117_list
    -- Reinhard Zumkeller, Aug 03 2012
    
  • Maple
    A076259 := proc(n) A005117(n+1)-A005117(n) ; end proc: # R. J. Mathar, Jan 09 2013
  • Mathematica
    Select[Range[200], SquareFreeQ] // Differences (* Jean-François Alcover, Mar 10 2019 *)
  • PARI
    t=1; for(n=2,1e3, if(issquarefree(n), print1(n-t", "); t=n)) \\ Charles R Greathouse IV, Jul 23 2015
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A076259(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        r, k = n+1, f(n+1)+1
        while r != k:
            r, k = k, f(k)+1
        return int(r-m) # Chai Wah Wu, Aug 15 2024

Formula

Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = Pi^2/6 (A013661). - Amiram Eldar, Oct 21 2020
a(n) < n^(1/5) for large enough n by a result of Pandey. (The constant Pi^2/6 can be absorbed by any eta > 0.) - Charles R Greathouse IV, Dec 04 2024

A053806 Numbers where a gap begins in the sequence of squarefree numbers (A005117).

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 32, 36, 40, 44, 48, 52, 54, 56, 60, 63, 68, 72, 75, 80, 84, 88, 90, 92, 96, 98, 104, 108, 112, 116, 120, 124, 128, 132, 135, 140, 144, 147, 150, 152, 156, 160, 162, 164, 168, 171, 175, 180, 184, 188, 192, 196, 198, 200, 204, 207, 212
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2000

Keywords

Examples

			The first gap is at 4 and has length 1; the next starts at 8 and has length 2 (since neither 8 nor 9 are squarefree).
		

Crossrefs

Programs

  • PARI
    is(n)=!issquarefree(n) && issquarefree(n-1) \\ Charles R Greathouse IV, Nov 05 2017
    
  • PARI
    list(lim)=my(v=List(),t); forfactored(n=4,lim\1, if(vecmax(n[2][,2])>1, if(!t, listput(v,n[1])); t=1, t=0)); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017

A376590 Second differences of consecutive squarefree numbers (A005117). First differences of A076259.

Original entry on oeis.org

0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 3, -2, 0, 0, -1, 0, 1, -1, 2, -2, 0, 1, -1, 0, 1, -1, 2, -2, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 1, 2, -3, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 2, -2, 3, -2, -1
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2024

Keywords

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
Zeros are A376591, complement A376592.
Sorted positions of first appearances are A376655.
A000040 lists the prime numbers, differences A001223.
A001597 lists perfect-powers, complement A007916.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A333254 lists run-lengths of differences between consecutive primes.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For squarefree numbers: A076259 (first differences), A376591 (inflections and undulations), A376592 (nonzero curvature), A376655 (sorted first positions).

Programs

  • Mathematica
    Differences[Select[Range[100],SquareFreeQ],2]
  • Python
    from math import isqrt
    from sympy import mobius
    def A376590(n):
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        a = iterfun(f,n)
        b = iterfun(lambda x:f(x)+1,a)
        return a+iterfun(lambda x:f(x)+2,b)-(b<<1) # Chai Wah Wu, Oct 02 2024

A072047 Number of prime factors of the squarefree numbers: omega(A005117(n)).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 3, 1, 2, 2, 1, 3, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2002

Keywords

Comments

For n > 1: length of row n in A265668. - Reinhard Zumkeller, Dec 13 2015

Crossrefs

Programs

  • Haskell
    a072047 n = a072047_list !! (n-1)
    a072047_list = map a001221 $ a005117_list
    -- Reinhard Zumkeller, Aug 08 2011
    
  • Mathematica
    PrimeOmega[Select[Range[200],SquareFreeQ]] (* Harvey P. Dale, May 14 2011 *)
  • PARI
    apply(omega, select(issquarefree, [1..200])) \\ Michel Marcus, Nov 25 2022
    
  • Python
    from math import isqrt
    from sympy import mobius, primenu
    def A072047(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return primenu(bisection(f)) # Chai Wah Wu, Aug 31 2024

Formula

a(n) = A001221(A005117(n)) = A001222(A005117(n)).
Sum_{A005117(k) <= x} a(k) = (1/zeta(2))*x*log(log(x)) + O(x) (Jakimczuk and Lalín, 2022). - Amiram Eldar, Feb 18 2023, corrected Sep 21 2024

A375927 Numbers k such that A005117(k+1) - A005117(k) = 1. In other words, the k-th squarefree number is 1 less than the next.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 14, 15, 18, 19, 21, 22, 24, 25, 27, 28, 30, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 58, 59, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 87, 88, 90, 94, 96, 97, 101, 102, 105, 107, 108, 110, 111, 113, 114, 116
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Comments

The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2-1)) = 0.53071182... (A065469). - Amiram Eldar, Sep 15 2024

Examples

			The squarefree numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ... which first increase by one after terms 1, 2, 4, 5, ...
		

Crossrefs

Positions of 1's in A076259.
For prime-powers (A246655) we have A375734.
First differences are A373127.
For nonsquarefree instead of squarefree we have A375709.
For nonprime numbers we have A375926, differences A373403.
For composite numbers we have A375929.
The complement is A375930, differences A120992.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],SquareFreeQ[#]&]],1]
  • PARI
    lista(kmax) = {my(is1 = 1, is2, c = 1); for(k = 2, kmax, is2 = issquarefree(k); if(is2, c++); if(is1 && is2, print1(c-1, ", ")); is1 = is2);} \\ Amiram Eldar, Sep 15 2024

A048672 Binary encoding of squarefree numbers (A005117): A048640(n)/2.

Original entry on oeis.org

0, 1, 2, 4, 3, 8, 5, 16, 32, 9, 6, 64, 128, 10, 17, 256, 33, 512, 7, 1024, 18, 65, 12, 2048, 129, 34, 4096, 11, 8192, 257, 16384, 66, 32768, 20, 130, 513, 65536, 131072, 1025, 36, 19, 262144, 258, 13, 524288, 1048576, 2049, 24, 35, 2097152, 4097, 4194304, 68
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

Permutation of nonnegative integers. Note the indexing, the domain starts from 1, although the range includes also 0.
A246353 gives the inverse of this sequence, in a sense that a(A246353(n)) = n for all n >= 0, and A246353(a(n)) = n for all n >= 1. When one is subtracted from the latter, another permutation of nonnegative integers is obtained: A064273. - Antti Karttunen, Aug 23 2014 based on comment from Howard A. Landman, Sep 25 2001
Also index of n-th term of A019565 when its terms are sorted in increasing order. For example: a(6) = 8. The smallest values of A019565 are 1,2,3,5,6,7 . The 6th is 7 which is A019565(8). - Philippe Lallouet (philip.lallouet(AT)orange.fr), Apr 28 2008
a(n) is the number whose binary indices are the prime indices of the n-th squarefree number (row n of A329631), where a binary index of n is any position of a 1 in its reversed binary expansion, and a prime index of n is a number m such that prime(m) divides n. The binary indices of n are row n of A048793, while the prime indices of n are row n of A112798. - Gus Wiseman, Nov 30 2019

Examples

			From _Gus Wiseman_, Nov 30 2019: (Start)
The sequence of squarefree numbers together with their prime indices (A329631) and the number a(n) with those binary indices begins:
   1 ->  {}      ->   0
   2 ->  {1}     ->   1
   3 ->  {2}     ->   2
   5 ->  {3}     ->   4
   6 ->  {1,2}   ->   3
   7 ->  {4}     ->   8
  10 ->  {1,3}   ->   5
  11 ->  {5}     ->  16
  13 ->  {6}     ->  32
  14 ->  {1,4}   ->   9
  15 ->  {2,3}   ->   6
  17 ->  {7}     ->  64
  19 ->  {8}     -> 128
  21 ->  {2,4}   ->  10
  22 ->  {1,5}   ->  17
  23 ->  {9}     -> 256
  26 ->  {1,6}   ->  33
  29 ->  {10}    -> 512
  30 ->  {1,2,3} ->   7
(End)
		

Crossrefs

Inverse: A246353 (see also A064273).
Cf. A019565.
A similar encoding of set-systems is A329661.
Cf. A087207.

Programs

  • Maple
    encode_sqrfrees := proc(upto_n) local b,i; b := [ ]; for i from 1 to upto_n do if(0 <> mobius(i)) then b := [ op(b), bef(i) ]; fi; od: RETURN(b); end; # see A048623 for bef
  • Mathematica
    Join[{0}, Total[2^(PrimePi[FactorInteger[#][[All, 1]]] - 1)]& /@ Select[ Range[2, 100], SquareFreeQ]] (* Jean-François Alcover, Mar 15 2016 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (issquarefree(n), if (n==1, x = 0, f = factor(n); x = sum(k=1, #f~, 2^(primepi(f[k, 1])-1))); print1(x, ", "); ); ); } \\ Michel Marcus, Oct 02 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, primepi, primefactors
    def A048672(n):
        if n == 1: return 0
        def f(x): return int(n-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return sum(1<Chai Wah Wu, Feb 22 2025

Formula

a(n) = 2^(i1-1)+2^(i2-1)+...+2^(iz-1), where A005117(n) = p_i1*p_i2*p_i3*...*p_iz.
A019565(a(n)) = A005117(n). - Peter Munn, Nov 19 2019
A000120(a(n)) = A072047(n). - Gus Wiseman, Nov 30 2019
a(n) = A087207(A005117(n)). - Flávio V. Fernandes, Feb 26 2025

A173143 Partial sums of the squarefree numbers, A005117.

Original entry on oeis.org

1, 3, 6, 11, 17, 24, 34, 45, 58, 72, 87, 104, 123, 144, 166, 189, 215, 244, 274, 305, 338, 372, 407, 444, 482, 521, 562, 604, 647, 693, 740, 791, 844, 899, 956, 1014, 1073, 1134, 1196, 1261, 1327, 1394, 1463, 1533, 1604, 1677, 1751, 1828, 1906, 1985, 2067, 2150
Offset: 1

Views

Author

Jonathan Vos Post, Feb 10 2010

Keywords

Examples

			The first squarefree numbers are: 1, 2, 3,  5,  6,  7, 10, ...
So, the first partial sums are:   1, 3, 6, 11, 17, 24, 34, ...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Select[Range[100],SquareFreeQ]] (* Harvey P. Dale, Jan 09 2016 *)
  • PARI
    lista(nn)=s = 0; for (n=1, nn, if (issquarefree(n), s += n; print1(s, ", "););); \\ Michel Marcus, Oct 01 2015
    
  • PARI
    helper(n,k)=my(t=(n+1)\k); binomial(t,2)*k + (n+1 - t*k)*t
    a(n)=my(s); forsquarefree(k=1,sqrtint(n), s+=moebius(k)*helper(n,k[1]^2)); s \\ Charles R Greathouse IV, Feb 05 2018

Formula

a(n) ~ (Pi^2/12) * n^2. - Amiram Eldar, Oct 21 2020

A328234 Numbers whose arithmetic derivative (A003415) is a squarefree number (A005117) > 1.

Original entry on oeis.org

6, 9, 10, 18, 21, 22, 25, 26, 30, 33, 34, 38, 42, 45, 49, 57, 58, 62, 63, 66, 69, 70, 74, 75, 78, 82, 85, 90, 93, 98, 102, 105, 106, 110, 114, 117, 118, 121, 126, 129, 130, 133, 134, 142, 145, 147, 150, 153, 154, 161, 165, 166, 169, 170, 171, 174, 175, 177, 178, 182, 185, 186, 190, 195, 198, 201, 202, 205, 206, 209, 210, 213
Offset: 1

Views

Author

Antti Karttunen, Oct 10 2019

Keywords

Comments

Sequence A328393 without primes.
No multiples of 4 because this is a subsequence of A048103.
All terms are cubefree, but being a cubefree non-multiple of 4 doesn't guarantee a membership, as for example 99 = 3^2 * 11 has an arithmetic derivative 11*(2*3) + 3^2 = 75 = 5^2 * 3, and thus is not included in this sequence. (See e.g., A328305).

Crossrefs

Cf. A328252 (nonsquarefree terms), A157037, A192192, A327978 (other subsequences).
Subsequence of following sequences: A004709, A048103, A328393.
Complement of the union of A000040 and A328303, i.e., complement of A328303, but without primes.
Cf. also A328248, A328250, A328305.

Programs

  • Mathematica
    arthD[n_]:=Module[{fi=FactorInteger[n]},n Total[(fi[[;;,2]]/fi[[;;,1]])]]; Select[Range[300],arthD[#]>1&&SquareFreeQ[arthD[#]]&] (* Harvey P. Dale, Dec 01 2024 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA328234(n) = { my(u=A003415(n)); (u>1 && issquarefree(u)); };

A376591 Inflection and undulation points in the sequence of squarefree numbers (A005117).

Original entry on oeis.org

1, 4, 9, 11, 12, 14, 16, 18, 21, 24, 27, 32, 33, 35, 40, 43, 48, 53, 55, 56, 58, 62, 65, 68, 71, 79, 84, 87, 96, 98, 99, 101, 103, 107, 110, 113, 118, 120, 121, 123, 128, 131, 134, 137, 142, 144, 145, 147, 152, 153, 155, 158, 163, 165, 166, 172, 175, 179, 184
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2024

Keywords

Comments

These are points at which the second differences (A376590) are zero.

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
with zeros at (A376591):
 1, 4, 9, 11, 12, 14, 16, 18, 21, 24, 27, 32, 33, 35, 40, 43, 48, 53, 55, 56, 58, ...
		

Crossrefs

The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
These are the zeros of A376590.
The complement is A376592.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
For inflections and undulations: A064113 (prime), A376602 (composite), A376588 (non-perfect-power), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power).
For squarefree numbers: A076259 (first differences), A376590 (second differences), A376592 (nonzero curvature).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],SquareFreeQ],2],0]
Showing 1-10 of 2010 results. Next