A053797 Lengths of successive gaps between squarefree numbers.
1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 2, 2, 1
Offset: 1
Examples
The first gap is at 4 and has length 1; the next starts at 8 and has length 2 (since neither 8 nor 9 are squarefree).
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
- M. Filaseta and O. Trifonov, On Gaps between Squarefree Numbers. In Analytic Number Theory, Vol 85, 1990, Birkhäuser, Basel, pp. 235-253.
- E. Fogels, On the average values of arithmetic functions, Proc. Cambridge Philos. Soc. 1941, 37: 358-372.
- L. Marmet, First occurrences of squarefree gaps...
- L. Marmet, First occurrences of square-free gaps and an algorithm for their computation, arXiv preprint arXiv:1210.3829 [math.NT], 2012. - From _N. J. A. Sloane_, Jan 01 2013
- K. F. Roth, On the gaps between squarefree numbers, J. London Math. Soc. 1951 (2) 26:263-268.
- Gus Wiseman, Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers
Crossrefs
Programs
-
Maple
SF:= select(numtheory:-issqrfree,[$1..1000]): map(`-`,select(`>`,SF[2..-1]-SF[1..-2],1),1); # Robert Israel, Sep 22 2015
-
Mathematica
ReplaceAll[Differences[Select[Range@384, SquareFreeQ]] - 1, 0 -> Nothing] (* Michael De Vlieger, Sep 22 2015 *)
Extensions
Offset set to 1 by Peter Kagey, Sep 29 2015
Comments