cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A005117 Squarefree numbers: numbers that are not divisible by a square greater than 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Keywords

Comments

1 together with the numbers that are products of distinct primes.
Also smallest sequence with the property that a(m)*a(k) is never a square for k != m. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001
Numbers k such that there is only one Abelian group with k elements, the cyclic group of order k (the numbers such that A000688(k) = 1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
Numbers k such that A007913(k) > phi(k). - Benoit Cloitre, Apr 10 2002
a(n) is the smallest m with exactly n squarefree numbers <= m. - Amarnath Murthy, May 21 2002
k is squarefree <=> k divides prime(k)# where prime(k)# = product of first k prime numbers. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 30 2004
Numbers k such that omega(k) = Omega(k) = A072047(k). - Lekraj Beedassy, Jul 11 2006
The LCM of any finite subset is in this sequence. - Lekraj Beedassy, Jul 11 2006
This sequence and the Beatty Pi^2/6 sequence (A059535) are "incestuous": the first 20000 terms are bounded within (-9, 14). - Ed Pegg Jr, Jul 22 2008
Let us introduce a function D(n) = sigma_0(n)/2^(alpha(1) + ... + alpha(r)), sigma_0(n) number of divisors of n (A000005), prime factorization of n = p(1)^alpha(1) * ... * p(r)^alpha(r), alpha(1) + ... + alpha(r) is sequence (A001222). Function D(n) splits the set of positive integers into subsets, according to the value of D(n). Squarefree numbers (A005117) has D(n)=1, other numbers are "deviated" from the squarefree ideal and have 0 < D(n) < 1. For D(n)=1/2 we have A048109, for D(n)=3/4 we have A060687. - Ctibor O. Zizka, Sep 21 2008
Numbers k such that gcd(k,k')=1 where k' is the arithmetic derivative (A003415) of k. - Giorgio Balzarotti, Apr 23 2011
Numbers k such that A007913(k) = core(k) = k. - Franz Vrabec, Aug 27 2011
Numbers k such that sqrt(k) cannot be simplified. - Sean Loughran, Sep 04 2011
Indices m where A057918(m)=0, i.e., positive integers m for which there are no integers k in {1,2,...,m-1} such that k*m is a square. - John W. Layman, Sep 08 2011
It appears that these are numbers j such that Product_{k=1..j} (prime(k) mod j) = 0 (see Maple code). - Gary Detlefs, Dec 07 2011. - This is the same claim as Mohammed Bouayoun's Mar 30 2004 comment above. To see why it holds: Primorial numbers, A002110, a subsequence of this sequence, are never divisible by any nonsquarefree number, A013929, and on the other hand, the index of the greatest prime dividing any n is less than n. Cf. A243291. - Antti Karttunen, Jun 03 2014
Conjecture: For each n=2,3,... there are infinitely many integers b > a(n) such that Sum_{k=1..n} a(k)*b^(k-1) is prime, and the smallest such an integer b does not exceed (n+3)*(n+4). - Zhi-Wei Sun, Mar 26 2013
The probability that a random natural number belongs to the sequence is 6/Pi^2, A059956 (see Cesàro reference). - Giorgio Balzarotti, Nov 21 2013
Booker, Hiary, & Keating give a subexponential algorithm for testing membership in this sequence without factoring. - Charles R Greathouse IV, Jan 29 2014
Because in the factorizations into prime numbers these a(n) (n >= 2) have exponents which are either 0 or 1 one could call the a(n) 'numbers with a fermionic prime number decomposition'. The levels are the prime numbers prime(j), j >= 1, and the occupation numbers (exponents) e(j) are 0 or 1 (like in Pauli's exclusion principle). A 'fermionic state' is then denoted by a sequence with entries 0 or 1, where, except for the zero sequence, trailing zeros are omitted. The zero sequence stands for a(1) = 1. For example a(5) = 6 = 2^1*3^1 is denoted by the 'fermionic state' [1, 1], a(7) = 10 by [1, 0, 1]. Compare with 'fermionic partitions' counted in A000009. - Wolfdieter Lang, May 14 2014
From Vladimir Shevelev, Nov 20 2014: (Start)
The following is an Eratosthenes-type sieve for squarefree numbers. For integers > 1:
1) Remove even numbers, except for 2; the minimal non-removed number is 3.
2) Replace multiples of 3 removed in step 1, and remove multiples of 3 except for 3 itself; the minimal non-removed number is 5.
3) Replace multiples of 5 removed as a result of steps 1 and 2, and remove multiples of 5 except for 5 itself; the minimal non-removed number is 6.
4) Replace multiples of 6 removed as a result of steps 1, 2 and 3 and remove multiples of 6 except for 6 itself; the minimal non-removed number is 7.
5) Repeat using the last minimal non-removed number to sieve from the recovered multiples of previous steps.
Proof. We use induction. Suppose that as a result of the algorithm, we have found all squarefree numbers less than n and no other numbers. If n is squarefree, then the number of its proper divisors d > 1 is even (it is 2^k - 2, where k is the number of its prime divisors), and, by the algorithm, it remains in the sequence. Otherwise, n is removed, since the number of its squarefree divisors > 1 is odd (it is 2^k-1).
(End)
The lexicographically least sequence of integers > 1 such that each entry has an even number of proper divisors occurring in the sequence (that's the sieve restated). - Glen Whitney, Aug 30 2015
0 is nonsquarefree because it is divisible by any square. - Jon Perry, Nov 22 2014, edited by M. F. Hasler, Aug 13 2015
The Heinz numbers of partitions with distinct parts. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} prime(j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] the Heinz number is 2*2*3*7*29 = 2436. The number 30 (= 2*3*5) is in the sequence because it is the Heinz number of the partition [1,2,3]. - Emeric Deutsch, May 21 2015
It is possible for 2 consecutive terms to be even; for example a(258)=422 and a(259)=426. - Thomas Ordowski, Jul 21 2015. [These form a subsequence of A077395 since their product is divisible by 4. - M. F. Hasler, Aug 13 2015]
There are never more than 3 consecutive terms. Runs of 3 terms start at 1, 5, 13, 21, 29, 33, ... (A007675). - Ivan Neretin, Nov 07 2015
a(n) = product of row n in A265668. - Reinhard Zumkeller, Dec 13 2015
Numbers without excess, i.e., numbers k such that A001221(k) = A001222(k). - Juri-Stepan Gerasimov, Sep 05 2016
Numbers k such that b^(phi(k)+1) == b (mod k) for every integer b. - Thomas Ordowski, Oct 09 2016
Boreico shows that the set of square roots of the terms of this sequence is linearly independent over the rationals. - Jason Kimberley, Nov 25 2016 (reference found by Michael Coons).
Numbers k such that A008836(k) = A008683(k). - Enrique Pérez Herrero, Apr 04 2018
The prime zeta function P(s) "has singular points along the real axis for s=1/k where k runs through all positive integers without a square factor". See Wolfram link. - Maleval Francis, Jun 23 2018
Numbers k such that A007947(k) = k. - Kyle Wyonch, Jan 15 2021
The Schnirelmann density of the squarefree numbers is 53/88 (Rogers, 1964). - Amiram Eldar, Mar 12 2021
Comment from Isaac Saffold, Dec 21 2021: (Start)
Numbers k such that all groups of order k have a trivial Frattini subgroup [Dummit and Foote].
Let the group G have order n. If n is squarefree and n > 1, then G is solvable, and thus by Hall's Theorem contains a subgroup H_p of index p for all p | n. Each H_p is maximal in G by order considerations, and the intersection of all the H_p's is trivial. Thus G's Frattini subgroup Phi(G), being the intersection of G's maximal subgroups, must be trivial. If n is not squarefree, the cyclic group of order n has a nontrivial Frattini subgroup. (End)
Numbers for which the squarefree divisors (A206778) and the unitary divisors (A077610) are the same; moreover they are also the set of divisors (A027750). - Bernard Schott, Nov 04 2022
0 = A008683(a(n)) - A008836(a(n)) = A001615(a(n)) - A000203(a(n)). - Torlach Rush, Feb 08 2023
From Robert D. Rosales, May 20 2024: (Start)
Numbers n such that mu(n) != 0, where mu(n) is the Möbius function (A008683).
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = mu(n)*n, where sigma(n) is the sum of divisors function (A000203). (End)
a(n) is the smallest root of x = 1 + Sum_{k=1..n-1} floor(sqrt(x/a(k))) greater than a(n-1). - Yifan Xie, Jul 10 2024
Number k such that A001414(k) = A008472(k). - Torlach Rush, Apr 14 2025
To elaborate on the formula from Greathouse (2018), the maximum of a(n) - floor(n*Pi^2/6 + sqrt(n)/17) is 10 at indices n = 48715, 48716, 48721, and 48760. The maximum is 11, at the same indices, if floor is taken individually for the two addends and the square root. If the value is rounded instead, the maximum is 9 at 10 indices between 48714 and 48765. - M. F. Hasler, Aug 08 2025

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 165, p. 53, Ellipses, Paris, 2008.
  • David S. Dummit and Richard M. Foote, Abstract algebra. Vol. 1999. Englewood Cliffs, NJ: David S.Prentice Hall, 1991.
  • Ivan M. Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 251.
  • Michael Pohst and Hans J. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A013929. Subsequence of A072774 and A209061.
Characteristic function: A008966 (mu(n)^2, where mu = A008683).
Subsequences: A000040, A002110, A235488.
Subsequences: numbers j such that j*a(k) is squarefree where k > 1: A056911 (k = 2), A261034 (k = 3), A274546 (k = 5), A276378 (k = 6).

Programs

  • Haskell
    a005117 n = a005117_list !! (n-1)
    a005117_list = filter ((== 1) . a008966) [1..]
    -- Reinhard Zumkeller, Aug 15 2011, May 10 2011
    
  • Magma
    [ n : n in [1..1000] | IsSquarefree(n) ];
    
  • Maple
    with(numtheory); a := [ ]; for n from 1 to 200 do if issqrfree(n) then a := [ op(a), n ]; fi; od:
    t:= n-> product(ithprime(k),k=1..n): for n from 1 to 113 do if(t(n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 07 2011
    A005117 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if numtheory[issqrfree](a) then return a; end if; end do: end if; end proc:  # R. J. Mathar, Jan 09 2013
  • Mathematica
    Select[ Range[ 113], SquareFreeQ] (* Robert G. Wilson v, Jan 31 2005 *)
    Select[Range[150], Max[Last /@ FactorInteger[ # ]] < 2 &] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
    NextSquareFree[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sf = n + sgn; While[c < Abs[k], While[ ! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[ sgn < 0, sf--, sf++]; c++]; sf + If[ sgn < 0, 1, -1]]; NestList[ NextSquareFree, 1, 70] (* Robert G. Wilson v, Apr 18 2014 *)
    Select[Range[250], MoebiusMu[#] != 0 &] (* Robert D. Rosales, May 20 2024 *)
  • PARI
    bnd = 1000; L = vector(bnd); j = 1; for (i=1,bnd, if(issquarefree(i),L[j]=i; j=j+1)); L
    
  • PARI
    {a(n)= local(m,c); if(n<=1,n==1, c=1; m=1; while( cMichael Somos, Apr 29 2005 */
    
  • PARI
    list(n)=my(v=vectorsmall(n,i,1),u,j); forprime(p=2,sqrtint(n), forstep(i=p^2, n, p^2, v[i]=0)); u=vector(sum(i=1,n,v[i])); for(i=1,n,if(v[i],u[j++]=i)); u \\ Charles R Greathouse IV, Jun 08 2012
    
  • PARI
    for(n=1, 113, if(core(n)==n, print1(n, ", "))); \\ Arkadiusz Wesolowski, Aug 02 2016
    
  • PARI
    S(n) = my(s); forsquarefree(k=1,sqrtint(n),s+=n\k[1]^2*moebius(k)); s;
    a(n) = my(min=1, max=231, k=0, sc=0); if(n >= 144, min=floor(zeta(2)*n - 5*sqrt(n)); max=ceil(zeta(2)*n + 5*sqrt(n))); while(min <= max, k=(min+max)\2; sc=S(k); if(abs(sc-n) <= sqrtint(n), break); if(sc > n, max=k-1, if(sc < n, min=k+1, break))); while(!issquarefree(k), k-=1); while(sc != n, my(j=1); if(sc > n, j = -1); k += j; sc += j; while(!issquarefree(k), k += j)); k; \\ Daniel Suteu, Jul 07 2022
    
  • PARI
    first(n)=my(v=vector(n),i); forsquarefree(k=1,if(n<268293,(33*n+30)\20,(n*Pi^2/6+0.058377*sqrt(n))\1), if(i++>n, return(v)); v[i]=k[1]); v \\ Charles R Greathouse IV, Jan 10 2023
    
  • PARI
    A5117=[1..3]; A005117(n)={if(n>#A5117, my(N=#A5117); A5117=Vec(A5117, max(n+999, N*5\4)); iferr(forsquarefree(k=A5117[N]+1, #A5117*Pi^2\6+sqrtint(#A5117)\17+11, A5117[N++]=k[1]),E,)); A5117[n]} \\ M. F. Hasler, Aug 08 2025
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 2) == n
    print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, Jul 31 2021
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A005117_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(x == 1 for x in factorint(n).values()),count(max(startvalue,1)))
    A005117_list = list(islice(A005117_gen(),20)) # Chai Wah Wu, May 09 2022
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A005117(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 22 2024

Formula

Limit_{n->oo} a(n)/n = Pi^2/6 (see A013661). - Benoit Cloitre, May 23 2002
Equals A039956 UNION A056911. - R. J. Mathar, May 16 2008
A122840(a(n)) <= 1; A010888(a(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
a(n) = A055229(A062838(n)) and a(n) > A055229(m) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010
A008477(a(n)) = 1. - Reinhard Zumkeller, Feb 17 2012
A055653(a(n)) = a(n); A055654(a(n)) = 0. - Reinhard Zumkeller, Mar 11 2012
A008966(a(n)) = 1. - Reinhard Zumkeller, May 26 2012
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
A056170(a(n)) = 0. - Reinhard Zumkeller, Dec 29 2012
A013928(a(n)+1) = n. - Antti Karttunen, Jun 03 2014
A046660(a(n)) = 0. - Reinhard Zumkeller, Nov 29 2015
Equals {1} UNION A000040 UNION A006881 UNION A007304 UNION A046386 UNION A046387 UNION A067885 UNION A123321 UNION A123322 UNION A115343 ... - R. J. Mathar, Nov 05 2016
|a(n) - n*Pi^2/6| < 0.058377*sqrt(n) for n >= 268293; this result can be derived from Cohen, Dress, & El Marraki, see links. - Charles R Greathouse IV, Jan 18 2018
From Amiram Eldar, Jul 07 2021: (Start)
Sum_{n>=1} (-1)^(a(n)+1)/a(n)^2 = 9/Pi^2.
Sum_{k=1..n} 1/a(k) ~ (6/Pi^2) * log(n).
Sum_{k=1..n} (-1)^(a(k)+1)/a(k) ~ (2/Pi^2) * log(n).
(all from Scott, 2006) (End)

A007283 a(n) = 3*2^n.

Original entry on oeis.org

3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(3, 6), L(3, 6), P(3, 6), T(3, 6). See A008776 for definitions of Pisot sequences.
Numbers k such that A006530(A000010(k)) = A000010(A006530(k)) = 2. - Labos Elemer, May 07 2002
Also least number m such that 2^n is the smallest proper divisor of m which is also a suffix of m in binary representation, see A080940. - Reinhard Zumkeller, Feb 25 2003
Length of the period of the sequence Fibonacci(k) (mod 2^(n+1)). - Benoit Cloitre, Mar 12 2003
The sequence of first differences is this sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
Subsequence of A122132. - Reinhard Zumkeller, Aug 21 2006
Apart from the first term, a subsequence of A124509. - Reinhard Zumkeller, Nov 04 2006
Total number of Latin n-dimensional hypercubes (Latin polyhedra) of order 3. - Kenji Ohkuma (k-ookuma(AT)ipa.go.jp), Jan 10 2007
Number of different ternary hypercubes of dimension n. - Edwin Soedarmadji (edwin(AT)systems.caltech.edu), Dec 10 2005
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n + 1} -> {1, 2, 3} such that for fixed, different x_1, x_2,...,x_n in {1, 2, ..., n + 1} and fixed y_1, y_2,...,y_n in {1, 2, 3} we have f(x_i) <> y_i, (i = 1,2,...,n). - Milan Janjic, May 10 2007
a(n) written in base 2: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, n times 0 (see A003953). - Jaroslav Krizek, Aug 17 2009
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
Numbers containing the number 3 in their Collatz trajectories. - Reinhard Zumkeller, Feb 20 2012
a(n-1) gives the number of ternary numbers with n digits with no two adjacent digits in common; e.g., for n=3 we have 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210 and 212. - Jon Perry, Oct 10 2012
If n > 1, then a(n) is a solution for the equation sigma(x) + phi(x) = 3x-4. This equation also has solutions 84, 3348, 1450092, ... which are not of the form 3*2^n. - Farideh Firoozbakht, Nov 30 2013
a(n) is the upper bound for the "X-ray number" of any convex body in E^(n + 2), conjectured by Bezdek and Zamfirescu, and proved in the plane E^2 (see the paper by Bezdek and Zamfirescu). - L. Edson Jeffery, Jan 11 2014
If T is a topology on a set V of size n and T is not the discrete topology, then T has at most 3 * 2^(n-2) many open sets. See Brown and Stephen references. - Ross La Haye, Jan 19 2014
Comment from Charles Fefferman, courtesy of Doron Zeilberger, Dec 02 2014: (Start)
Fix a dimension n. For a real-valued function f defined on a finite set E in R^n, let Norm(f, E) denote the inf of the C^2 norms of all functions F on R^n that agree with f on E. Then there exist constants k and C depending only on the dimension n such that Norm(f, E) <= C*max{ Norm(f, S) }, where the max is taken over all k-point subsets S in E. Moreover, the best possible k is 3 * 2^(n-1).
The analogous result, with the same k, holds when the C^2 norm is replaced, e.g., by the C^1, alpha norm (0 < alpha <= 1). However, the optimal analogous k, e.g., for the C^3 norm is unknown.
For the above results, see Y. Brudnyi and P. Shvartsman (1994). (End)
Also, coordination sequence for (infinity, infinity, infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The average of consecutive powers of 2 beginning with 2^1. - Melvin Peralta and Miriam Ong Ante, May 14 2016
For n > 1, a(n) is the smallest Zumkeller number with n divisors that are also Zumkeller numbers (A083207). - Ivan N. Ianakiev, Dec 09 2016
Also, for n >= 2, the number of length-n strings over the alphabet {0,1,2,3} having only the single letters as nonempty palindromic subwords. (Corollary 21 in Fleischer and Shallit) - Jeffrey Shallit, Dec 02 2019
Also, a(n) is the minimum link-length of any covering trail, circuit, path, and cycle for the set of the 2^(n+2) vertices of an (n+2)-dimensional hypercube. - Marco Ripà, Aug 22 2022
The known fixed points of maps n -> A163511(n) and n -> A243071(n). [See comments in A163511]. - Antti Karttunen, Sep 06 2023
The finite subsequence a(3), a(4), a(5), a(6) = 24, 48, 96, 192 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A000244 (see comment there). - Felix Huber, Feb 15 2024
A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. For n>2, a(n-3) is the radius of the level n Sierpiński triangle graph. - Allan Bickle, Aug 03 2024

References

  • Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
  • T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
  • Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.
Essentially same as A003945 and A042950.
Row sums of (5, 1)-Pascal triangle A093562 and of (1, 5) Pascal triangle A096940.
Cf. Latin squares: A000315, A002860, A003090, A040082, A003191; Latin cubes: A098843, A098846, A098679, A099321.

Programs

Formula

G.f.: 3/(1-2*x).
a(n) = 2*a(n - 1), n > 0; a(0) = 3.
a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - Benoit Cloitre, Aug 20 2002
a(n) = A118416(n + 1, 2) for n > 1. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n) + A000079(n + 1). - Zerinvary Lajos, May 12 2007
a(n) = A000079(n)*3. - Omar E. Pol, Dec 16 2008
From Paul Curtz, Feb 05 2009: (Start)
a(n) = b(n) + b(n+3) for b = A001045, A078008, A154879.
a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n*A084247(n). (End)
a(n) = 2^n + 2^(n + 1). - Jaroslav Krizek, Aug 17 2009
a(n) = A173786(n + 1, n) = A173787(n + 2, n). - Reinhard Zumkeller, Feb 28 2010
A216022(a(n)) = 6 and A216059(a(n)) = 7, for n > 0. - Reinhard Zumkeller, Sep 01 2012
a(n) = (A000225(n) + 1)*3. - Martin Ettl, Nov 11 2012
E.g.f.: 3*exp(2*x). - Ilya Gutkovskiy, May 15 2016
A020651(a(n)) = 2. - Yosu Yurramendi, Jun 01 2016
a(n) = sqrt(A014551(n + 1)*A014551(n + 2) + A014551(n)^2). - Ezhilarasu Velayutham, Sep 01 2019
a(A048672(n)) = A225546(A133466(n)). - Michel Marcus and Peter Munn, Nov 29 2019
Sum_{n>=1} 1/a(n) = 2/3. - Amiram Eldar, Oct 28 2020

A048675 If n = p_i^e_i * ... * p_k^e_k, p_i < ... < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + ... + e_k * 2^k).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 3, 4, 5, 16, 4, 32, 9, 6, 4, 64, 5, 128, 6, 10, 17, 256, 5, 8, 33, 6, 10, 512, 7, 1024, 5, 18, 65, 12, 6, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 16, 9, 66, 34, 32768, 7, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 6, 36, 19
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

The original motivation for this sequence was to encode the prime factorization of n in the binary representation of a(n), each such representation being unique as long as this map is restricted to A005117 (squarefree numbers, resulting a permutation of nonnegative integers A048672) or any of its subsequence, resulting an injective function like A048623 and A048639.
However, also the restriction to A260443 (not all terms of which are squarefree) results a permutation of nonnegative integers, namely A001477, the identity permutation.
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443), then a(n) gives the evaluation of that polynomial at x=2.
The primitive completely additive integer sequence that satisfies a(n) = a(A225546(n)), n >= 1. By primitive, we mean that if b is another such sequence, then there is an integer k such that b(n) = k * a(n) for all n >= 1. - Peter Munn, Feb 03 2020
If the binary rank of an integer partition y is given by Sum_i 2^(y_i-1), and the Heinz number is Product_i prime(y_i), then a(n) is the binary rank of the integer partition with Heinz number n. Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices), and the function taking a multiset m to Product_i prime(m_i) is the inverse of A112798 (prime indices). - Gus Wiseman, May 22 2024

Examples

			From _Gus Wiseman_, May 22 2024: (Start)
The A018819(7) = 6 cases of binary rank 7 are the following, together with their prime indices:
   30: {1,2,3}
   40: {1,1,1,3}
   54: {1,2,2,2}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
(End)
		

Crossrefs

Row 2 of A104244.
Similar logarithmic functions: A001414, A056239, A090880, A289506, A293447.
Left inverse of the following sequences: A000079, A019565, A038754, A068911, A134683, A260443, A332824.
A003961, A028234, A032742, A055396, A064989, A067029, A225546, A297845 are used to express relationship between terms of this sequence.
Cf. also A048623, A048676, A099884, A277896 and tables A277905, A285325.
Cf. A297108 (Möbius transform), A332813 and A332823 [= a(n) mod 3].
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000203,A331750), (A005940,A087808), (A007913,A248663), (A007947,A087207), (A097248,A048675), (A206296,A000129), (A248692,A056239), (A283477,A005187), (A284003,A006068), (A285101,A028362), (A285102,A068052), (A293214,A001065), (A318834,A051953), (A319991,A293897), (A319992,A293898), (A320017,A318674), (A329352,A069359), (A332461,A156552), (A332462,A156552), (A332825,A000010) and apparently (A163511,A135529).
See comments/formulas in A277333, A331591, A331740 giving their relationship to this sequence.
The formula section details how the sequence maps the terms of A329050, A329332.
A277892, A322812, A322869, A324573, A324575 give properties of the n-th term of this sequence.
The term k appears A018819(k) times.
The inverse transformation is A019565 (Heinz number of binary indices).
The version for distinct prime indices is A087207.
Numbers k such that a(k) is prime are A277319, counts A372688.
Grouping by image gives A277905.
A014499 lists binary indices of prime numbers.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Maple
    nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc. - this is also A049084.
    A048675 := proc(n) local s,d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end;
    # simpler alternative
    f:= n -> add(2^(numtheory:-pi(t[1])-1)*t[2], t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Oct 10 2016
  • Mathematica
    a[1] = 0; a[n_] := Total[ #[[2]]*2^(PrimePi[#[[1]]]-1)& /@ FactorInteger[n] ]; Array[a, 100] (* Jean-François Alcover, Mar 15 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, f[k,2]*2^primepi(f[k,1]))/2; \\ Michel Marcus, Oct 10 2016
    
  • PARI
    \\ The following program reconstructs terms (e.g. for checking purposes) from the factorization file prepared by Hans Havermann:
    v048675sigs = readvec("a048675.txt");
    A048675(n) = if(n<=2,n-1,my(prsig=v048675sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,ps[i]^es[i])); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        if n==1: return 0
        f=factorint(n)
        return sum([f[i]*2**(primepi(i) - 1) for i in f])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 19 2017

Formula

a(1) = 0, a(n) = 1/2 * (e1*2^i1 + e2*2^i2 + ... + ez*2^iz) if n = p_{i1}^e1*p_{i2}^e2*...*p_{iz}^ez, where p_i is the i-th prime. (e.g. p_1 = 2, p_2 = 3).
Totally additive with a(p^e) = e * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n). [Missing factor e added to the comment by Antti Karttunen, Jul 29 2015]
From Antti Karttunen, Jul 29 2015: (Start)
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n.]
a(1) = 0; for n > 1, a(n) = (A067029(n) * (2^(A055396(n)-1))) + a(A028234(n)).
Other identities. For all n >= 0:
a(A019565(n)) = n.
a(A260443(n)) = n.
a(A206296(n)) = A000129(n).
a(A005940(n+1)) = A087808(n).
a(A007913(n)) = A248663(n).
a(A007947(n)) = A087207(n).
a(A283477(n)) = A005187(n).
a(A284003(n)) = A006068(n).
a(A285101(n)) = A028362(1+n).
a(A285102(n)) = A068052(n).
Also, it seems that a(A163511(n)) = A135529(n) for n >= 1. (End)
a(1) = 0, a(2n) = 1+a(n), a(2n+1) = 2*a(A064989(2n+1)). - Antti Karttunen, Oct 11 2016
From Peter Munn, Jan 31 2020: (Start)
a(n^2) = a(A003961(n)) = 2 * a(n).
a(A297845(n,k)) = a(n) * a(k).
a(n) = a(A225546(n)).
a(A329332(n,k)) = n * k.
a(A329050(n,k)) = 2^(n+k).
(End)
From Antti Karttunen, Feb 02-25 2020, Feb 01 2021: (Start)
a(n) = Sum_{d|n} A297108(d) = Sum_{d|A225546(n)} A297108(d).
a(n) = a(A097248(n)).
For n >= 2:
A001221(a(n)) = A322812(n), A001222(a(n)) = A277892(n).
A000203(a(n)) = A324573(n), A033879(a(n)) = A324575(n).
For n >= 1, A331750(n) = a(A000203(n)).
For n >= 1, the following chains hold:
A293447(n) >= a(n) >= A331740(n) >= A331591(n).
a(n) >= A087207(n) >= A248663(n).
(End)
a(n) = A087207(A097248(n)). - Flávio V. Fernandes, Jul 16 2025

Extensions

Entry revised by Antti Karttunen, Jul 29 2015
More linking formulas added by Antti Karttunen, Apr 18 2017

A248663 Binary encoding of the prime factors of the squarefree part of n.

Original entry on oeis.org

0, 1, 2, 0, 4, 3, 8, 1, 0, 5, 16, 2, 32, 9, 6, 0, 64, 1, 128, 4, 10, 17, 256, 3, 0, 33, 2, 8, 512, 7, 1024, 1, 18, 65, 12, 0, 2048, 129, 34, 5, 4096, 11, 8192, 16, 4, 257, 16384, 2, 0, 1, 66, 32, 32768, 3, 20, 9, 130, 513, 65536, 6, 131072, 1025, 8, 0, 36, 19
Offset: 1

Views

Author

Peter Kagey, Jan 11 2015

Keywords

Comments

The binary digits of a(n) encode the prime factorization of A007913(n), where the i-th digit from the right is 1 if and only if prime(i) divides A007913(n), otherwise 0. - Robert Israel, Jan 12 2015
Old name: a(1) = 0; a(A000040(n)) = 2^(n-1), and a(n*m) = a(n) XOR a(m).
XOR is the bitwise exclusive or operation (A003987).
a(k^2) = 0 for a natural number k.
Equivalently, the i-th binary digit from the right is 1 iff prime(i) divides n an odd number of times, otherwise zero. - Ethan Beihl, Oct 15 2016
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443, with scheme explained in A206284), then A048675(n) gives the evaluation of that polynomial at x=2. This sequence is otherwise similar, except the polynomial is evaluated over the field GF(2), which implies also that all its coefficients are essentially reduced modulo 2. - Antti Karttunen, Dec 11 2015
Squarefree numbers (A005117) give the positions k where a(k) = A048675(k). - Antti Karttunen, Oct 29 2016
From Peter Munn, Jun 07 2021: (Start)
When we encode polynomials with nonnegative integer coefficients as described by Antti Karttunen above, polynomial addition is represented by integer multiplication, multiplication is represented by A297845(.,.), and this sequence represents a surjective semiring homomorphism to polynomials in GF(2)[x] (encoded as described in A048720). The mapping of addition operations by this homomorphism is part of the sequence definition: "a(n*m) = a(n) XOR a(m)". The mapping of multiplication is given by a(A297845(n, k)) = A048720(a(n), a(k)).
In a related way, A329329 defines a representation of a different set of polynomials as positive integers, namely polynomials in GF(2)[x,y].
Let P_n(x,y) denote the polynomial represented, as in A329329, by n >= 1. If 0 is substituted for y in P_n(x,y), we get a polynomial P'_n(x,y) (in which y does not appear, of course) that is equivalent to a polynomial P'_n(x) in GF(2)[x]. a(n) is the integer encoding of P'_n(x) (described in A048720).
Viewed as above, this sequence represents another surjective homomorphism, a homomorphism between polynomial rings, with A329329(.,.)/A059897(.,.) and A048720(.,.)/A003987(.,.) as the respective ring operations.
a(n) can be composed as a(n) = A048675(A007913(n)) and the effect of the A007913(.) component corresponds to different operations on the respective polynomial domains of the two homomorphisms described above. In the first homomorphism, coefficients are reduced modulo 2; in the second, 0 is substituted for y. This is illustrated in the examples.
(End)

Examples

			a(3500) = a(2^2 * 5^3 * 7) = a(2) XOR a(2) XOR a(5) XOR a(5) XOR a(5) XOR a(7) = 1 XOR 1 XOR 4 XOR 4 XOR 4 XOR 8 = 0b0100 XOR 0b1000 = 0b1100 = 12.
From _Peter Munn_, Jun 07 2021: (Start)
The examples in the table below illustrate the homomorphisms (between polynomial structures) represented by this sequence.
The staggering of the rows is to show how the mapping n -> A007913(n) -> A048675(A007913(n)) = a(n) relates to the encoded polynomials, as not all encodings are relevant at each stage.
For an explanation of each polynomial encoding, see the sequence referenced in the relevant column heading. (Note also that A007913 generates squarefree numbers, and with these encodings, all squarefree numbers represent equivalent polynomials in N[x] and GF(2)[x,y].)
                     |<-----    encoded polynomials    ----->|
  n  A007913(n) a(n) |         N[x]    GF(2)[x,y]    GF(2)[x]|
                     |Cf.:  A206284       A329329     A048720|
--------------------------------------------------------------
  24                            x+3         x+y+1
          6                     x+1           x+1
                  3                                       x+1
--------------------------------------------------------------
  36                           2x+2          xy+y
          1                       0             0
                  0                                         0
--------------------------------------------------------------
  60                        x^2+x+2       x^2+x+y
         15                   x^2+x         x^2+x
                  6                                     x^2+x
--------------------------------------------------------------
  90                       x^2+2x+1      x^2+xy+1
         10                   x^2+1         x^2+1
                  5                                     x^2+1
--------------------------------------------------------------
This sequence is a left inverse of A019565. A019565(.) maps a(n) to A007913(n) for all n, effectively reversing the second stage of the mapping from n to a(n) shown above. So, with the encodings used here, A019565(.) represents each of two injective homomorphisms that map polynomials in GF(2)[x] to equivalent polynomials in N[x] and GF(2)[x,y] respectively.
(End)
		

Crossrefs

A048675 composed with A007913. A007814 composed with A225546.
A left inverse of A019565.
Other sequences used to express relationship between terms of this sequence: A003961, A007913, A331590, A334747.
Cf. also A099884, A277330.
A087207 is the analogous sequence with OR.
A277417 gives the positions where coincides with A277333.
A000290 gives the positions of zeros.

Programs

  • Haskell
    import Data.Bits (xor)
    a248663 = foldr (xor) 0 . map (\i -> 2^(i - 1)) . a112798_row
    -- Peter Kagey, Sep 16 2016
    
  • Maple
    f:= proc(n)
    local F,f;
    F:= select(t -> t[2]::odd, ifactors(n)[2]);
    add(2^(numtheory:-pi(f[1])-1), f = F)
    end proc:
    seq(f(i),i=1..100); # Robert Israel, Jan 12 2015
  • Mathematica
    a[1] = 0; a[n_] := a[n] = If[PrimeQ@ n, 2^(PrimePi@ n - 1), BitXor[a[#], a[n/#]] &@ FactorInteger[n][[1, 1]]]; Array[a, 66] (* Michael De Vlieger, Sep 16 2016 *)
  • PARI
    A248663(n) = vecsum(apply(p -> 2^(primepi(p)-1),factor(core(n))[,1])); \\ Antti Karttunen, Feb 15 2021
    
  • Python
    from sympy import factorint, primepi
    from sympy.ntheory.factor_ import core
    def a048675(n):
        f=factorint(n)
        return 0 if n==1 else sum([f[i]*2**(primepi(i) - 1) for i in f])
    def a(n): return a048675(core(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 21 2017
  • Ruby
    require 'prime'
    def f(n)
      a = 0
      reverse_primes = Prime.each(n).to_a.reverse
      reverse_primes.each do |prime|
        a <<= 1
        while n % prime == 0
          n /= prime
          a ^= 1
        end
      end
      a
    end
    (Scheme, with memoizing-macro definec)
    (definec (A248663 n) (cond ((= 1 n) 0) ((= 1 (A010051 n)) (A000079 (- (A000720 n) 1))) (else (A003987bi (A248663 (A020639 n)) (A248663 (A032742 n)))))) ;; Where A003987bi computes bitwise-XOR as in A003987.
    ;; Alternatively:
    (definec (A248663 n) (cond ((= 1 n) 0) (else (A003987bi (A000079 (- (A055396 n) 1)) (A248663 (A032742 n))))))
    ;; Antti Karttunen, Dec 11 2015
    

Formula

a(1) = 0; for n > 1, if n is a prime, a(n) = 2^(A000720(n)-1), otherwise a(A020639(n)) XOR a(A032742(n)). [After the definition.] - Antti Karttunen, Dec 11 2015
For n > 1, this simplifies to: a(n) = 2^(A055396(n)-1) XOR a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n. Cf. a similar formula for A048675.]
Other identities and observations. For all n >= 0:
a(n) = A048672(A100112(A007913(n))). - Peter Kagey, Dec 10 2015
From Antti Karttunen, Dec 11 2015, Sep 19 & Oct 27 2016, Feb 15 2021: (Start)
a(n) = a(A007913(n)). [The result depends only on the squarefree part of n.]
a(n) = A048675(A007913(n)).
a(A206296(n)) = A168081(n).
a(A260443(n)) = A264977(n).
a(A265408(n)) = A265407(n).
a(A275734(n)) = A275808(n).
a(A276076(n)) = A276074(n).
a(A283477(n)) = A006068(n).
(End)
From Peter Munn, Jan 09 2021 and Apr 20 2021: (Start)
a(n) = A007814(A225546(n)).
a(A019565(n)) = n; A019565(a(n)) = A007913(n).
a(A003961(n)) = 2 * a(n).
a(A297845(n, k)) = A048720(a(n), a(k)).
a(A329329(n, k)) = A048720(a(n), a(k)).
a(A059897(n, k)) = A003987(a(n), a(k)).
a(A331590(n, k)) = a(n) + a(k).
a(A334747(n)) = a(n) + 1.
(End)

Extensions

New name from Peter Munn, Nov 01 2023

A329631 Irregular triangle read by rows where row n lists the prime indices of the n-th squarefree number.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 6, 1, 4, 2, 3, 7, 8, 2, 4, 1, 5, 9, 1, 6, 10, 1, 2, 3, 11, 2, 5, 1, 7, 3, 4, 12, 1, 8, 2, 6, 13, 1, 2, 4, 14, 1, 9, 15, 2, 7, 16, 3, 5, 2, 8, 1, 10, 17, 18, 1, 11, 3, 6, 1, 2, 5, 19, 2, 9, 1, 3, 4, 20, 21, 1, 12, 4, 5, 1, 2, 6
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   1: {}         33: {2,5}      66: {1,2,5}     97: {25}
   2: {1}        34: {1,7}      67: {19}       101: {26}
   3: {2}        35: {3,4}      69: {2,9}      102: {1,2,7}
   5: {3}        37: {12}       70: {1,3,4}    103: {27}
   6: {1,2}      38: {1,8}      71: {20}       105: {2,3,4}
   7: {4}        39: {2,6}      73: {21}       106: {1,16}
  10: {1,3}      41: {13}       74: {1,12}     107: {28}
  11: {5}        42: {1,2,4}    77: {4,5}      109: {29}
  13: {6}        43: {14}       78: {1,2,6}    110: {1,3,5}
  14: {1,4}      46: {1,9}      79: {22}       111: {2,12}
  15: {2,3}      47: {15}       82: {1,13}     113: {30}
  17: {7}        51: {2,7}      83: {23}       114: {1,2,8}
  19: {8}        53: {16}       85: {3,7}      115: {3,9}
  21: {2,4}      55: {3,5}      86: {1,14}     118: {1,17}
  22: {1,5}      57: {2,8}      87: {2,10}     119: {4,7}
  23: {9}        58: {1,10}     89: {24}       122: {1,18}
  26: {1,6}      59: {17}       91: {4,6}      123: {2,13}
  29: {10}       61: {18}       93: {2,11}     127: {31}
  30: {1,2,3}    62: {1,11}     94: {1,15}     129: {2,14}
  31: {11}       65: {3,6}      95: {3,8}      130: {1,3,6}
		

Crossrefs

Row sums are A319246.
Row lengths are A072047.
Same as A319247 with rows reversed.
Composition of A000720 and A265668.
Looking at all numbers instead of just squarefree numbers gives A112798.

Programs

  • Mathematica
    Table[PrimePi/@First/@If[k==1,{},FactorInteger[k]],{k,Select[Range[30],SquareFreeQ]}]

A339360 Sum of all squarefree numbers with greatest prime factor prime(n).

Original entry on oeis.org

1, 2, 9, 60, 504, 6336, 89856, 1645056, 33094656, 801239040, 24246190080, 777550233600, 29697402470400, 1250501433753600, 55083063155097600, 2649111037319577600, 143390180403000115200, 8619643674791667302400, 534710099148093259776000, 36412881178052121329664000
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2020

Keywords

Examples

			The initial terms are:
   1 = 1,
   2 = 2,
   9 = 3 + 6,
  60 = 5 + 10 + 15 + 30.
		

Crossrefs

A010036 takes prime indices here to binary indices, row sums of A209862.
A048672 takes prime indices to binary indices in squarefree numbers.
A054640 divides the n-th term by prime(n), row sums of A261144.
A072047 counts prime factors of squarefree numbers.
A339194 is the restriction to semiprimes, row sums of A339116.
A339195 has this as row sums.
A002110 lists primorials.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A056239 is the sum of prime indices of n (Heinz weight).
A246867 groups squarefree numbers by weight, with row sums A147655.
A319246 is the sum of prime indices of the n-th squarefree number.
A319247 lists reversed prime indices of squarefree numbers.
A329631 lists prime indices of squarefree numbers.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.

Programs

  • Maple
    f:= proc(n) local i;
      `if`(n=0, 1, ithprime(n)) *mul(1+ithprime(i),i=1..n-1)
    end proc:
    map(f, [$0..20]); # Robert Israel, Dec 08 2020
  • Mathematica
    Table[Sum[Times@@Prime/@stn,{stn,Select[Subsets[Range[n]],MemberQ[#,n]&]}],{n,10}]

Formula

For n >= 1, a(n) = A054640(n-1) * prime(n).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 08 2025

A048623 Binary encoding of semiprimes (A001358).

Original entry on oeis.org

2, 3, 4, 5, 9, 6, 10, 17, 8, 33, 18, 65, 12, 129, 34, 257, 16, 66, 20, 130, 513, 1025, 36, 258, 2049, 24, 4097, 68, 8193, 514, 40, 1026, 16385, 132, 32769, 2050, 260, 65537, 72, 32, 131073, 4098, 8194, 136, 262145, 16386, 524289, 48, 516, 1048577, 1028
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

Permutation of A048645 (without the term 1).

Examples

			Squares p_i^2 are encoded with a single bit in position i (e.g. 25=ithprime(3)*ithprime(3) => 2^3 = 8) and other terms p_i*p_j are encoded with two bits, as sum 2^(i-1)+2^(j-1)
		

Crossrefs

Programs

  • Maple
    nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc.
    bef := proc(n) local s,d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end; # bef = Binary Encode Factorization.
    encode_semiprimes := proc(upto_n) local b,i; b := [ ]; for i from 1 to upto_n do if((3 = tau(i)) or ((0 <> mobius(i)) and (4 = tau(i)))) then b := [ op(b), bef(i) ]; fi; od: RETURN(b); end;
  • Mathematica
    f[n_] := Block[{p = FactorInteger@ n}, Total[2^PrimePi@ # &@ Map[First, p - If[Length@ p == 2, 1, 0]]]]; f /@ Select[Range@ 156, PrimeOmega@ # == 2 &] (* Michael De Vlieger, Oct 01 2015 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (bigomega(n)==2, if (issquare(n), x = 2^primepi(sqrtint(n)), f = factor(n); x = sum(k=1, #f~, 2^(primepi(f[k,1]) - 1))); print1(x, ", ");););} \\ Michel Marcus, Oct 02 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, factorint
    def A048623(n):
        def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return sum(e<Chai Wah Wu, Feb 22 2025

A329558 Product of primes indexed by the first n squarefree numbers.

Original entry on oeis.org

1, 2, 6, 30, 330, 4290, 72930, 2114970, 65564070, 2688126870, 115589455410, 5432704404270, 320529559851930, 21475480510079310, 1567710077235789630, 123849096101627380770, 10279474976435072603910, 1038226972619942332994910, 113166740015573714296445190, 12787841621759829715498306470
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. Then a(n) is the smallest MM-number of a set of n sets.

Examples

			The sequence of terms together with their corresponding systems begins:
        1: {}
        2: {{}}
        6: {{},{1}}
       30: {{},{1},{2}}
      330: {{},{1},{2},{3}}
     4290: {{},{1},{2},{3},{1,2}}
    72930: {{},{1},{2},{3},{1,2},{4}}
  2114970: {{},{1},{2},{3},{1,2},{4},{1,3}}
		

Crossrefs

The smallest BII-number of a set of n sets is A000225(n).
MM-numbers of sets of sets are A302494.
The case without empty edges is A329557.
The case without singletons is A329556.
The case without empty edges or singletons is A329554.
The connected version is A329552.
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    sqvs=Select[Range[30],SquareFreeQ];
    Table[Times@@Prime/@Take[sqvs,k],{k,0,Length[sqvs]}]

Formula

a(n > 0) = 2 * A329557(n - 1).
a(n) = Product_{i = 1..n} prime(A005117(i)).

Extensions

a(19) from Jinyuan Wang, Feb 24 2020

A064273 Permutation of nonnegative integers: a(n) = A013928(A019565(n)).

Original entry on oeis.org

0, 1, 2, 4, 3, 6, 10, 18, 5, 9, 13, 27, 22, 43, 64, 128, 7, 14, 20, 40, 33, 68, 100, 202, 47, 93, 143, 282, 232, 469, 702, 1404, 8, 16, 25, 48, 39, 79, 119, 235, 56, 110, 167, 333, 278, 553, 832, 1660, 88, 175, 260, 520, 437, 872, 1303, 2609, 608, 1216, 1826, 3649
Offset: 0

Views

Author

Howard A. Landman, Sep 23 2001

Keywords

Comments

From Antti Karttunen, Aug 24 2014: (Start)
The original name of the sequence was: "Inverse of sequence A048672 considered as a permutation of the nonnegative integers".
However, the real inverse to A048672 is A246353(n) (= a(n)+1), satisfying A246353(A048672(n)) = n for all n. This sequence subtracts one from the terms of A246353 so as to obtain a permutation of nonnegative integers (bijection [0..] --> [0..]).
Sequence is obtained when the range of A019565 is compacted so that it becomes surjective, thus the logarithmic scatter plots look very similar. (Same applies to A246353.) Compare also to the plot of A005940.
(End)

Crossrefs

One less than A246353.

Programs

  • PARI
    allocatemem(234567890);
    default(primelimit, 2^22)
    uplim_for_13928 = 13123111;
    v013928 = vector(uplim_for_13928); A013928(n) = v013928[n];
    v013928[1]=0; n=1; while((n < uplim_for_13928), if(issquarefree(n), v013928[n+1] = v013928[n]+1, v013928[n+1] = v013928[n]); n++);
    A019565(n) = {factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ M. F. Hasler
    A064273(n) = A013928(A019565(n));
    for(n=0, 478, write("b064273.txt", n, " ", A064273(n))); \\ Antti Karttunen, Aug 23 2014
    
  • Python
    from math import prod, isqrt
    from sympy import prime, mobius
    def A064273(n):
        m = prod(prime(i) for i,j in enumerate(bin(n)[-1:1:-1],1) if j=='1')
        return int(sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1))-1) # Chai Wah Wu, Feb 23 2025
  • Scheme
    (define (A064273 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) (- (A013928 (+ 1 p)) 1)) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p))))) ;; Antti Karttunen, Aug 23 2014
    

Formula

From Antti Karttunen, Aug 24 2014: (Start)
a(n) = A013928(A019565(n)).
a(n) = A246353(n) - 1.
(End)

Extensions

More terms from Carl R. White, Apr 19 2006
Name changed by Antti Karttunen, Aug 23 2014

A243290 The index of the greatest prime dividing the n-th squarefree number: a(n) = A061395(A005117(n)).

Original entry on oeis.org

0, 1, 2, 3, 2, 4, 3, 5, 6, 4, 3, 7, 8, 4, 5, 9, 6, 10, 3, 11, 5, 7, 4, 12, 8, 6, 13, 4, 14, 9, 15, 7, 16, 5, 8, 10, 17, 18, 11, 6, 5, 19, 9, 4, 20, 21, 12, 5, 6, 22, 13, 23, 7, 14, 10, 24, 6, 11, 15, 8, 25, 26, 7, 27, 4, 16, 28, 29, 5, 12
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[FactorInteger[k][[-1, 1]]], {k, Select[Range[120], SquareFreeQ]}] (* Amiram Eldar, Mar 04 2024 *)

Formula

For all n>1, a(n) = A070939(A048672(n)).
Showing 1-10 of 17 results. Next