A376590 Second differences of consecutive squarefree numbers (A005117). First differences of A076259.
0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 3, -2, 0, 0, -1, 0, 1, -1, 2, -2, 0, 1, -1, 0, 1, -1, 2, -2, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 1, 2, -3, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 2, -2, 3, -2, -1
Offset: 1
Keywords
Examples
The squarefree numbers (A005117) are: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ... with first differences (A076259): 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ... with first differences (A376590): 0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
Crossrefs
Sorted positions of first appearances are A376655.
A333254 lists run-lengths of differences between consecutive primes.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
Programs
-
Mathematica
Differences[Select[Range[100],SquareFreeQ],2]
-
Python
from math import isqrt from sympy import mobius def A376590(n): def iterfun(f,n=0): m, k = n, f(n) while m != k: m, k = k, f(k) return m def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) a = iterfun(f,n) b = iterfun(lambda x:f(x)+1,a) return a+iterfun(lambda x:f(x)+2,b)-(b<<1) # Chai Wah Wu, Oct 02 2024
Comments