cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A376590 Second differences of consecutive squarefree numbers (A005117). First differences of A076259.

Original entry on oeis.org

0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 3, -2, 0, 0, -1, 0, 1, -1, 2, -2, 0, 1, -1, 0, 1, -1, 2, -2, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 1, 2, -3, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 2, -2, 3, -2, -1
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2024

Keywords

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
Zeros are A376591, complement A376592.
Sorted positions of first appearances are A376655.
A000040 lists the prime numbers, differences A001223.
A001597 lists perfect-powers, complement A007916.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A333254 lists run-lengths of differences between consecutive primes.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For squarefree numbers: A076259 (first differences), A376591 (inflections and undulations), A376592 (nonzero curvature), A376655 (sorted first positions).

Programs

  • Mathematica
    Differences[Select[Range[100],SquareFreeQ],2]
  • Python
    from math import isqrt
    from sympy import mobius
    def A376590(n):
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        a = iterfun(f,n)
        b = iterfun(lambda x:f(x)+1,a)
        return a+iterfun(lambda x:f(x)+2,b)-(b<<1) # Chai Wah Wu, Oct 02 2024

A377046 Array read by downward antidiagonals where A(n,k) is the n-th term of the k-th differences of nonsquarefree numbers.

Original entry on oeis.org

4, 8, 4, 9, 1, -3, 12, 3, 2, 5, 16, 4, 1, -1, -6, 18, 2, -2, -3, -2, 4, 20, 2, 0, 2, 5, 7, 3, 24, 4, 2, 2, 0, -5, -12, -15, 25, 1, -3, -5, -7, -7, -2, 10, 25, 27, 2, 1, 4, 9, 16, 23, 25, 15, -10, 28, 1, -1, -2, -6, -15, -31, -54, -79, -94, -84, 32, 4, 3, 4, 6, 12, 27, 58, 112, 191, 285, 369
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

Row k is the k-th differences of A013929.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ---------------------------------------------------------
  k=0:   4     8     9    12    16    18    20    24    25
  k=1:   4     1     3     4     2     2     4     1     2
  k=2:  -3     2     1    -2     0     2    -3     1    -1
  k=3:   5    -1    -3     2     2    -5     4    -2     4
  k=4:  -6    -2     5     0    -7     9    -6     6    -7
  k=5:   4     7    -5    -7    16   -15    12   -13    10
  k=6:   3   -12    -2    23   -31    27   -25    23   -13
  k=7: -15    10    25   -54    58   -52    48   -36    13
  k=8:  25    15   -79   112  -110   100   -84    49     1
  k=9: -10   -94   191  -222   210  -184   133   -48   -57
Triangle form:
   4
   8   4
   9   1  -3
  12   3   2   5
  16   4   1  -1  -6
  18   2  -2  -3  -2   4
  20   2   0   2   5   7   3
  24   4   2   2   0  -5 -12 -15
  25   1  -3  -5  -7  -7  -2  10  25
  27   2   1   4   9  16  23  25  15 -10
  28   1  -1  -2  -6 -15 -31 -54 -79 -94 -84
  32   4   3   4   6  12  27  58 112 191 285 369
		

Crossrefs

Initial rows: A013929, A078147, A376593.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
For squarefree numbers we have A377038, sums A377039, absolute A377040.
Triangle row-sums are A377047, absolute version A377048.
Column n = 1 is A377049, for squarefree A377041, for prime A007442 or A030016.
First position of 0 in each row is A377050.
For prime-power instead of nonsquarefree we have A377051.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,SquareFreeQ[#]&]&,4,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A013929(i+k).

A377038 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the squarefree numbers.

Original entry on oeis.org

1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 6, 1, -1, -2, -3, 7, 1, 0, 1, 3, 6, 10, 3, 2, 2, 1, -2, -8, 11, 1, -2, -4, -6, -7, -5, 3, 13, 2, 1, 3, 7, 13, 20, 25, 22, 14, 1, -1, -2, -5, -12, -25, -45, -70, -92, 15, 1, 0, 1, 3, 8, 20, 45, 90, 160, 252, 17, 2, 1, 1, 0, -3, -11, -31, -76, -166, -326, -578
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Comments

Row n is the k-th differences of A005117 = the squarefree numbers.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ----------------------------------------------------------
  k=0:   1     2     3     5     6     7    10    11    13
  k=1:   1     1     2     1     1     3     1     2     1
  k=2:   0     1    -1     0     2    -2     1    -1     0
  k=3:   1    -2     1     2    -4     3    -2     1     1
  k=4:  -3     3     1    -6     7    -5     3     0    -2
  k=5:   6    -2    -7    13   -12     8    -3    -2     3
  k=6:  -8    -5    20   -25    20   -11     1     5    -5
  k=7:   3    25   -45    45   -31    12     4   -10    10
  k=8:  22   -70    90   -76    43    -8   -14    20   -19
  k=9: -92   160  -166   119   -51    -6    34   -39    28
Triangle form:
   1
   2   1
   3   1   0
   5   2   1   1
   6   1  -1  -2  -3
   7   1   0   1   3   6
  10   3   2   2   1  -2  -8
  11   1  -2  -4  -6  -7  -5   3
  13   2   1   3   7  13  20  25  22
  14   1  -1  -2  -5 -12 -25 -45 -70 -92
  15   1   0   1   3   8  20  45  90 160 252
		

Crossrefs

Row k=0 is A005117.
Row k=1 is A076259.
Row k=2 is A376590.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
Triangle row-sums are A377039, absolute version A377040.
Column n = 1 is A377041, for primes A007442 or A030016.
First position of 0 in each row is A377042.
For nonsquarefree instead of squarefree numbers we have A377046.
For prime-powers instead of squarefree numbers we have A377051.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A005117(i+k).

A377049 First term of the n-th differences of the nonsquarefree numbers. Inverse zero-based binomial transform of A013929.

Original entry on oeis.org

4, 4, -3, 5, -6, 4, 3, -15, 25, -10, -84, 369, -1067, 2610, -5824, 12246, -24622, 47577, -88233, 155962, -259086, 393455, -512281, 456609, 191219, -2396571, 8213890, -21761143, 50923029, -110269263, 225991429, -444168664, 844390152, -1561482492, 2817844569
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
For squarefree instead of nonsquarefree numbers we have A377041.
For antidiagonal-sums we have A377047, absolute A377048.
For first position of 0 in each row we have A377050.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=20;
    Table[First[Differences[NestList[NestWhile[#+1&, #+1,SquareFreeQ[#]&]&,4,2*nn],k]],{k,0,nn}]
    With[{nsf=Select[Range[1000],!SquareFreeQ[#]&]},Table[Differences[nsf,n],{n,0,40}]][[;;,1]] (* Harvey P. Dale, Nov 28 2024 *)

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)

A377048 Antidiagonal-sums of the absolute value of the array A377046(n,k) = n-th term of k-th differences of nonsquarefree numbers (A013929).

Original entry on oeis.org

4, 12, 13, 22, 28, 31, 39, 64, 85, 132, 395, 1103, 2650, 5868, 12297, 24694, 47740, 88731, 157744, 265744, 418463, 605929, 805692, 1104513, 2396645, 8213998, 21761334, 50923517, 110270883, 225997492, 444193562, 844498084, 1561942458, 2819780451, 4973173841
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

These are the row-sums of the absolute value triangle version of A377046.

Examples

			The third antidiagonal of A377046 is (9, 1, -3), so a(3) = 13.
		

Crossrefs

The version for primes is A376681, noncomposites A376684, composites A377035.
For squarefree instead of nonsquarefree numbers we have A377040.
The non-absolute version is A377047.
For leading column we have A377049.
For first position of 0 in each row we have A377050.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,SquareFreeQ[#]&]&,4,2*nn],k],nn],{k,0,nn}];
    Total/@Table[Abs[t[[j,i-j+1]]],{i,nn},{j,i}]

A377047 Antidiagonal-sums of the array A377046(n,k) = n-th term of k-th differences of nonsquarefree numbers (A013929).

Original entry on oeis.org

4, 12, 7, 22, 14, 17, 39, 0, 37, 112, -337, 1103, -2570, 5868, -12201, 24670, -47528, 88283, -155910, 259140, -393399, 512341, -456546, -191155, 2396639, -8213818, 21761218, -50922953, 110269343, -225991348, 444168748, -844390064, 1561482582, -2817844477
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

These are the row-sums of the triangle-version of A377046.

Examples

			The third antidiagonal of A377046 is (9, 1, -3), so a(3) = 7.
		

Crossrefs

The version for primes is A140119, noncomposites A376683, composites A377034.
For squarefree instead of nonsquarefree numbers we have A377039.
The absolute value version is A377048.
For leading column we have A377049.
For first position of 0 in each row we have A377050.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,SquareFreeQ[#]&]&,4,2*nn],k],nn],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A376602 Inflection and undulation points in the sequence of composite numbers (A002808).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 14, 15, 16, 18, 20, 21, 22, 25, 27, 29, 32, 33, 34, 37, 38, 39, 41, 43, 44, 45, 48, 50, 52, 53, 54, 57, 60, 61, 62, 65, 66, 67, 68, 69, 72, 74, 76, 78, 80, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 96, 99, 100, 101, 103, 105, 106, 107, 108
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A073445) are zero.

Examples

			The composite numbers (A002808) are:
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with zeros at (A376602):
  1, 3, 5, 7, 9, 11, 14, 15, 16, 18, 20, 21, 22, 25, 27, 29, 32, 33, 34, 37, 38, ...
		

Crossrefs

Partitions into composite numbers are counted by A023895, factorizations A050370.
For prime instead of composite we have A064113.
These are the positions of zeros in A073445.
For first differences we had A073783, ones A375929, complement A065890.
For concavity in primes we have A258025/A258026, weak A333230/A333231.
For upward concavity (instead of zero) we have A376651, downward A376652.
The complement is A376603.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376603 (nonzero curvature), A376651 (concave-up), A376652 (concave-down).
For inflection and undulation points: A064113 (prime), A376588 (non-perfect-power), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],CompositeQ],2],0]

A377050 Position of first appearance of zero in the n-th differences of the nonsquarefree numbers, or 0 if it does not appear.

Original entry on oeis.org

0, 0, 5, 11, 4, 129, 10, 89, 16, 161, 72, 77325, 71, 4870, 70, 253, 75, 737923, 166, 1648316, 165, 8753803, 164, 208366710, 163, 99489971, 162, 49493333, 161
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

If a(29) is not 0, then it is > 10^12. - Lucas A. Brown, Oct 25 2024

Examples

			The fourth differences of A013929 begin: -6, -2, 5, 0, -7, 9, -6, 6, -7, ... so a(4) = 4.
		

Crossrefs

The version for primes is A376678, noncomposites A376855, composites A377037.
For squarefree instead of nonsquarefree numbers we have A377042.
For antidiagonal-sums we have A377047, absolute A377048.
For leading column we have A377049.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],!SquareFreeQ[#]&],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

a(17)-a(28) from Lucas A. Brown, Oct 25 2024

A377040 Antidiagonal-sums of absolute value of the array A377038(n,k) = n-th term of k-th differences of squarefree numbers (A005117).

Original entry on oeis.org

1, 3, 4, 9, 13, 18, 28, 39, 106, 267, 595, 1212, 2286, 4041, 6720, 10497, 15387, 20914, 25894, 29377, 37980, 70785, 175737, 343806, 579751, 861934, 1162080, 1431880, 1688435, 2589533, 8731932, 23911101, 58109574, 130912573, 276067892, 543833014, 992784443
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Examples

			The fourth antidiagonal of A377038 is (6, 1, -1, -2, -3), so a(4) = 13.
		

Crossrefs

The version for primes is A376681, noncomposites A376684, composites A377035.
These are the antidiagonal-sums of the absolute value of A377038.
The non-absolute version is A377039.
For nonsquarefree numbers we have A377048, non-absolute A377047.
For prime-powers we have A377053, non-absolute A377052.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A377041 gives first column of A377038, for primes A007442 or A030016.
A377042 gives first position of 0 in each row of A377038.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
    Total/@Table[Abs[t[[j,i-j+1]]],{i,nn},{j,i}]

A376592 Points of nonzero curvature in the sequence of squarefree numbers (A005117).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 13, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 34, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 57, 59, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2024

Keywords

Comments

These are points at which the second differences (A376590) are nonzero.

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
with nonzeros at (A376591):
  2, 3, 5, 6, 7, 8, 10, 13, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 34, 36, ...
		

Crossrefs

The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
These are the nonzeros of A376590.
The complement is A376591.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
For points of nonzero curvature: A333214 (prime), A376603 (composite), A376589 (non-perfect-power), A376595 (nonsquarefree), A376598 (prime-power), A376601 (non-prime-power).
For squarefree numbers: A076259 (first differences), A376590 (second differences), A376591 (inflection and undulation points).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[100], SquareFreeQ],2]],1|-1]
Showing 1-10 of 16 results. Next