cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065486 Decimal expansion of Product_{p prime} (1 + 1/(p+1)^2).

Original entry on oeis.org

1, 2, 6, 6, 5, 5, 8, 5, 0, 1, 4, 7, 1, 5, 2, 8, 5, 7, 1, 6, 1, 4, 5, 4, 7, 1, 1, 2, 6, 2, 9, 6, 4, 0, 8, 4, 5, 3, 9, 5, 5, 6, 0, 2, 3, 5, 4, 5, 7, 3, 4, 4, 8, 2, 1, 1, 2, 1, 9, 6, 7, 3, 2, 9, 5, 4, 8, 3, 9, 6, 1, 0, 6, 0, 7, 5, 1, 6, 4, 0, 8, 6, 8, 8, 8, 1, 7, 2, 0, 9, 0, 4, 2, 3, 6, 8, 2, 1, 5
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			1.26655850147152857161454711262964...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 99; terms = 800; P[n_] := PrimeZetaP[n]; LR = LinearRecurrence[{-3, -4, -2}, {0, 0, 2}, terms + 10]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 + 1/(p+1)^2) \\ Amiram Eldar, Mar 15 2021

Formula

Equals Sum_{k>=1} mu(k)^2/sigma(k)^2, where mu is the Möbius function (A008683) and sigma(k) is the sum of divisors of k (A000203). - Amiram Eldar, Jan 14 2022