cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A110833 a(n) = (prime(n)+1)^2.

Original entry on oeis.org

9, 16, 36, 64, 144, 196, 324, 400, 576, 900, 1024, 1444, 1764, 1936, 2304, 2916, 3600, 3844, 4624, 5184, 5476, 6400, 7056, 8100, 9604, 10404, 10816, 11664, 12100, 12996, 16384, 17424, 19044, 19600, 22500, 23104, 24964, 26896, 28224, 30276, 32400, 33124, 36864
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 18 2005

Keywords

Crossrefs

Programs

  • Magma
    [(p+1)^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 27 2014
    
  • Mathematica
    Table[(Prime[n] + 1)^2, {n, 200}] (* Vincenzo Librandi, Mar 27 2014 *)
  • Python
    from sympy import primerange
    print([(p+1)**2 for p in primerange(1, 192)]) # Michael S. Branicky, Sep 16 2021

Formula

From Amiram Eldar, Jan 23 2021: (Start)
a(n) = A008864(n)^2.
Product_{n>=1} (1 + 1/a(n)) = A065486.
Product_{n>=1} (1 - 1/a(n)) = A065472. (End)
Sum 1/a(n) = A382554. - R. J. Mathar, Mar 31 2025

Extensions

Corrected and extended by Ray Chandler, Oct 08 2005

A067009 Continued fraction expansion of Product_{p prime} (1 + 1/(p+1)^2).

Original entry on oeis.org

1, 3, 1, 3, 40, 1, 4, 1, 1, 1, 3, 1, 3, 2, 4, 2, 40, 2, 2, 2, 4, 3, 1, 1, 1, 1, 1, 1, 7, 5, 1, 2, 1, 2, 3, 3, 1, 12, 1, 4, 2, 1, 1, 1, 2, 2, 1, 1, 5, 1, 2, 1, 2, 4, 1, 2, 1, 6, 2, 4, 1, 26, 4, 5, 6, 1, 17, 7, 1, 1, 7, 4, 1, 17, 7, 1, 3, 1, 1, 62, 1, 2, 3, 2, 36, 3, 1, 1, 1, 5, 1, 12, 12, 1, 4, 4, 1, 2, 22, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 30 2002

Keywords

Examples

			1.26655850147152857161454711262964...
		

Crossrefs

Cf. A065486 (decimal expansion).

Programs

  • PARI
    contfrac(prodeulerrat(1 + 1/(p+1)^2)) \\ Amiram Eldar, Mar 15 2021

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003
Offset changed by Andrew Howroyd, Jul 04 2024

A275258 Toth's partial sum over the number of divisors of the greatest unitary divisor.

Original entry on oeis.org

1, 3, 4, 6, 6, 11, 8, 11, 11, 16, 12, 21, 14, 21, 23, 20, 18, 29, 20, 32, 30, 31, 24, 39, 27, 36, 30, 42, 30, 57, 32, 37, 45, 46, 47, 56, 38, 51, 52, 59, 42, 77, 44, 62, 63, 61, 48, 71, 51, 69, 67, 72, 54, 77, 70, 78, 74, 76, 60, 113, 62, 81, 83
Offset: 1

Views

Author

R. J. Mathar, Jul 21 2016

Keywords

Crossrefs

Programs

  • Maple
    A275258 := proc(n)
        local a,d ;
        a := 0 ;
        for  d in A077610(n) do
            a := a+A005361(d)*A275257(n/d,d) ;
        end do:
        a ;
    end proc:
    seq(A275258(n),n=1..80) ;
  • Mathematica
    beta[n_] := Times @@ Transpose[FactorInteger[n]][[2]]; phi[x_, n_] := Sum[Boole[ GCD[k, n] == 1 ], {k, 1, x}]; a[n_] := DivisorSum[n, beta[#] * phi[n/#, #] &, GCD[#, n/#] == 1 &]; Array[a, 100] (* Amiram Eldar, Sep 22 2019 *)

Formula

a(n) = Sum_{k=1..n} A000005( A165430(n,k) ).
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n * log(n)^2), where c = A065486. - Amiram Eldar, Dec 22 2023
Showing 1-3 of 3 results.