cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A065463 Decimal expansion of Product_{p prime} (1 - 1/(p*(p+1))).

Original entry on oeis.org

7, 0, 4, 4, 4, 2, 2, 0, 0, 9, 9, 9, 1, 6, 5, 5, 9, 2, 7, 3, 6, 6, 0, 3, 3, 5, 0, 3, 2, 6, 6, 3, 7, 2, 1, 0, 1, 8, 8, 5, 8, 6, 4, 3, 1, 4, 1, 7, 0, 9, 8, 0, 4, 9, 4, 1, 4, 2, 2, 6, 8, 4, 2, 5, 9, 1, 0, 9, 7, 0, 5, 6, 6, 8, 2, 0, 0, 6, 7, 7, 8, 5, 3, 6, 8, 0, 8, 2, 4, 4, 1, 4, 5, 6, 9, 3, 1, 3
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

The density of A268335. - Vladimir Shevelev, Feb 01 2016
The probability that two numbers are coprime given that one of them is coprime to a randomly chosen third number. - Luke Palmer, Apr 27 2019

Examples

			0.7044422009991655927366033503...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1200; digits = 98; terms = 1200; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p*(p+1))) \\ Amiram Eldar, Mar 14 2021

Formula

From Amiram Eldar, Mar 05 2019: (Start)
Equals lim_{m->oo} (2/m^2)*Sum_{k=1..m} rad(k), where rad(k) = A007947(k) is the squarefree kernel of k (Cohen).
Equals lim_{m->oo} (2/m^2)*Sum_{k=1..m} uphi(k), where uphi(k) = A047994(k) is the unitary totient function (Sitaramachandrarao and Suryanarayana).
Equals lim_{m->oo} (1/log(m))*Sum_{k=1..m} 1/psi(k), where psi(k) = A001615(k) is the Dedekind psi function (Sita Ramaiah and Suryanarayana).
(End)
Equals A065473*A013661/A065480. - Luke Palmer, Apr 27 2019
Equals Sum_{k>=1} mu(k)/(k*sigma(k)), where mu is the Möbius function (A008683) and sigma(k) is the sum of divisors of k (A000203). - Amiram Eldar, Jan 14 2022
Equals 1/A065489. - R. J. Mathar, May 27 2025

A320767 Inverse Euler transform applied once to {1,-1,0,0,0,...}, twice to {1,0,0,0,0,...}, or three times to {1,1,1,1,1,...}.

Original entry on oeis.org

1, 1, -2, 1, -1, 2, -3, 4, -5, 8, -13, 18, -25, 40, -62, 90, -135, 210, -324, 492, -750, 1164, -1809, 2786, -4305, 6710, -10460, 16264, -25350, 39650, -62057, 97108, -152145, 238818, -375165, 589520, -927200, 1459960, -2300346, 3626200, -5720274, 9030450
Offset: 0

Views

Author

Gus Wiseman, Oct 20 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    Nest[EulerInvTransform,Array[DiscreteDelta,50,0],2]
Showing 1-2 of 2 results.