cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A065479 Decimal expansion of Product_{p prime >= 3} (1 - 1/(p^2-p-1)).

Original entry on oeis.org

7, 1, 5, 4, 6, 8, 2, 3, 5, 9, 8, 9, 9, 5, 5, 8, 4, 5, 0, 9, 4, 7, 7, 4, 7, 0, 5, 7, 1, 1, 7, 2, 8, 0, 7, 7, 6, 7, 5, 9, 7, 6, 2, 4, 8, 9, 8, 3, 7, 6, 7, 7, 6, 7, 4, 2, 6, 7, 2, 4, 7, 6, 9, 4, 4, 2, 4, 9, 5, 3, 5, 5, 5, 5, 1, 9, 7, 5, 5, 8, 5, 6, 8, 3, 3, 1, 5, 5, 5, 4, 0, 9, 0, 9, 0, 1, 1, 3
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.715468235989955845094774705711728...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 600; digits = 98; terms = 600; P[n_] := PrimeZetaP[n] - 1/2^n;LR = LinearRecurrence[{2, 2, -3, -2}, {0, 0, -2, -3}, terms + 10]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2-p-1), 1, 3) \\ Amiram Eldar, Mar 15 2021

A376789 Table read by antidiagonals: T(n,k) is the number of Lyndon words of length k on the alphabet {0,1} whose prefix is the bitwise complement of the binary expansion of n with n >= 1 and k >= 1.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 1, 0, 0, 6, 1, 1, 0, 0, 9, 2, 2, 1, 0, 0, 18, 2, 4, 1, 0, 0, 0, 30, 4, 7, 1, 0, 1, 0, 0, 56, 5, 14, 1, 1, 1, 0, 0, 0, 99, 8, 25, 2, 1, 2, 1, 0, 0, 0, 186, 11, 48, 2, 2, 3, 2, 1, 0, 0, 0, 335, 18, 88, 3, 3, 6, 4, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Peter Kagey, Oct 04 2024

Keywords

Comments

T(n,k) = 0 if n is in A366195.
Row 1 is A059966.
Row 2 is A006206 for n > 1.
Row 3 is A065491 for n > 2.
Row 4 is A065417.
Row 6 is A349904.

Examples

			Table begins
n\k| 1  2  3  4  5  6   7   8   9  10   11   12
---+-------------------------------------------
 1 | 1, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335
 2 | 0, 1, 1, 1, 2, 2,  4,  5,  8, 11,  18,  25
 3 | 0, 0, 1, 2, 4, 7, 14, 25, 48, 88, 168, 310
 4 | 0, 0, 1, 1, 1, 1,  2,  2,  3,  4,   6,   7
 5 | 0, 0, 0, 0, 1, 1,  2,  3,  5,  7,  12,  18
 6 | 0, 0, 1, 1, 2, 3,  6, 10, 18, 31,  56,  96
 7 | 0, 0, 0, 1, 2, 4,  8, 15, 30, 57, 112, 214
 8 | 0, 0, 0, 1, 1, 1,  1,  1,  2,  2,   3,   3
 9 | 0, 0, 0, 0, 0, 0,  1,  1,  1,  2,   3,   4
10 | 0, 0, 0, 0, 1, 1,  2,  3,  5,  7,  12,  18
11 | 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,   0,   0
12 | 0, 0, 0, 1, 1, 2,  3,  5,  9, 15,  26,  43
T(6,5) = 2 because 6 is 110 in base 2, its bitwise complement is 001, and there are T(6,5) = 2 length-5 Lyndon words that begin with 001: 00101 and 00111.
		

Crossrefs

Showing 1-2 of 2 results.