cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A065491 Exponents in expansion of constant A065479 as a product zeta(n)^(-a(n)).

Original entry on oeis.org

0, 1, 1, 2, 4, 7, 14, 25, 48, 88, 168, 310, 590, 1103, 2092, 3945, 7500, 14216, 27102, 51627, 98694, 188766, 361936, 694565, 1335466, 2570375, 4954744, 9561045, 18473140, 35728300, 69176558, 134063535, 260062168, 504911460, 981117286, 1907939760, 3713106350
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Inverse Euler transform of A001045. - R. J. Mathar, Jul 26 2010

Crossrefs

Cf. A065479.

Formula

a(n) ~ 2^(n+1)/n. - Vaclav Kotesovec, Oct 09 2019

Extensions

More terms from R. J. Mathar, Jul 26 2010

A306190 a(n) = p^2 - p - 1 where p = prime(n), the n-th prime.

Original entry on oeis.org

1, 5, 19, 41, 109, 155, 271, 341, 505, 811, 929, 1331, 1639, 1805, 2161, 2755, 3421, 3659, 4421, 4969, 5255, 6161, 6805, 7831, 9311, 10099, 10505, 11341, 11771, 12655, 16001, 17029, 18631, 19181, 22051, 22649, 24491, 26405, 27721, 29755, 31861, 32579, 36289
Offset: 1

Views

Author

Kritsada Moomuang, Jan 28 2019

Keywords

Comments

Terms are divisible by 5 iff p is of the form 10*m + 3 (A030431).

Examples

			a(3) = 19 because 5^2 - 5 - 1 = 19.
		

Crossrefs

Supersequence of A091568.
Subsequence of A028387 or A165900.
Second column of A378979.
A039914 is an essentially identical sequence.

Programs

  • Maple
    map(p -> p^2-p-1, [seq(ithprime(i),i=1..100)]); # Robert Israel, Mar 11 2019
  • Mathematica
    Table[Prime[n]^2-Prime[n]-1, {n, 1, 100}] (* Jinyuan Wang, Feb 02 2019 *)
  • PARI
    a(n) = {p=prime(n);p^2-p-1;} \\ Jinyuan Wang, Feb 02 2019

Formula

a(n) = A036689(n) - 1.
a(n) = A036690(n) - A072055(n).
a(n) = A060800(n) - A089241(n).
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065488.
Product_{n>=2} (1 - 1/a(n)) = A065479. (End)
a(n) = A033879(A001248(n)). [Deficiency of squares of primes] - Antti Karttunen, Dec 13 2024

A078089 Continued fraction expansion of Product_{p prime >= 3} (1 - 1/(p^2-p-1)).

Original entry on oeis.org

0, 1, 2, 1, 1, 16, 1, 2, 5, 4, 1, 43, 9, 1, 3, 1, 4, 2, 2, 1, 2, 1, 78, 1, 50, 3, 1, 1, 1, 2, 2, 6, 11, 4, 1, 1, 2, 1, 2, 2, 1, 4, 2, 6, 8, 1, 2, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 7, 1, 1, 154, 1, 1, 1, 1, 3, 1, 12, 1, 1, 1, 3, 1, 1, 5, 1, 2, 1, 3, 4, 1, 3, 1, 1, 1, 4, 2, 2, 10, 8, 3, 9, 1, 1, 1
Offset: 0

Views

Author

Benoit Cloitre, Dec 02 2002

Keywords

Crossrefs

Cf. A065479 (decimal expansion).

Programs

  • PARI
    contfrac(prodeulerrat(1 - 1/(p^2-p-1), 1, 3)) \\ Amiram Eldar, Mar 15 2021

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024
Showing 1-3 of 3 results.