cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378979 Square array A(n, k) = 2*A246278(n, k) - sigma(A246278(n, k)), read by falling antidiagonals. Deficiency applied to the prime shift array.

Original entry on oeis.org

1, 1, 2, 0, 5, 4, 1, 6, 19, 6, 2, 14, 22, 41, 10, -4, 10, 94, 58, 109, 12, 4, 12, 38, 286, 118, 155, 16, 1, 18, 102, 70, 1198, 190, 271, 18, -3, 41, 46, 394, 158, 2014, 286, 341, 22, -2, 26, 469, 94, 1284, 214, 4606, 394, 505, 28, 8, 22, 148, 2001, 178, 2452, 350, 6478, 614, 811, 30, -12, 22, 178, 630, 13177, 262, 4842, 502, 11614, 838, 929, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2024

Keywords

Comments

Each column is strictly increasing.
For all k >= 1, A(1+A378985(k), k) > 0, and it is the topmost positive number of the column k.

Examples

			The top left corner of the array:
k=  |  1    2    3     4    5     6    7      8     9    10   11     12
2k= |  2    4    6     8   10    12   14     16    18    20   22     24
----+-------------------------------------------------------------------
  1 |  1,   1,   0,    1,   2,   -4,   4,     1,   -3,   -2,   8,   -12,
  2 |  2,   5,   6,   14,  10,   12,  18,    41,   26,   22,  22,    30,
  3 |  4,  19,  22,   94,  38,  102,  46,   469,  148,  178,  62,   502,
  4 |  6,  41,  58,  286,  70,  394,  94,  2001,  630,  476, 106,  2746,
  5 | 10, 109, 118, 1198, 158, 1284, 178, 13177, 1522, 1720, 218, 14110,
  6 | 12, 155, 190, 2014, 214, 2452, 262, 26181, 3216, 2762, 334, 31858,
  7 | 16, 271, 286, 4606, 350, 4842, 446, 78301, 5416, 5926, 478, 82294,
		

Crossrefs

Cf. A006093 (column 1), A306190 (column 2), A378978 (row 1), A378985 (row index of the topmost positive term in column n).
Cf. also arrays A341605, A341606 and A341607.
Cf. also A324055.

Programs

  • PARI
    up_to = 78;
    A033879(n) = (n+n-sigma(n));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A378979sq(row,col) = A033879(A246278sq(row,col));
    A378979list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A378979sq(col,(a-(col-1))))); (v); };
    v378979 = A378979list(up_to);
    A378979(n) = v378979[n];

Formula

A(n, k) = A033879(A246278(n, k)) = 2*A246278(n, k) - A355927(n, k).
A(n, k) = A372563(n,k) - A372562(n, k).

A039914 Smallest k>1 such that k(p-1)-1 is divisible by p^2, p=n-th prime.

Original entry on oeis.org

5, 5, 19, 41, 109, 155, 271, 341, 505, 811, 929, 1331, 1639, 1805, 2161, 2755, 3421, 3659, 4421, 4969, 5255, 6161, 6805, 7831, 9311, 10099, 10505, 11341, 11771, 12655, 16001, 17029, 18631, 19181, 22051, 22649, 24491, 26405, 27721, 29755, 31861
Offset: 1

Views

Author

Keywords

Examples

			a(1)=5 because 5(2-1)-1=4 is divisible by 2^2.
		

Crossrefs

Cf. A039678.
A306190 is an essentially identical sequence.

Programs

  • PARI
    a(n) = {my(p = prime(n), k = 2); while ((k*(p-1)-1) % p^2, k++); k;} \\ Michel Marcus, Sep 28 2013

Extensions

Added constraint on k to the definition, otherwise a(1)=1 - R. J. Mathar, Oct 10 2010
Showing 1-2 of 2 results.