A065550 a(n) = floor(sqrt(phi(w)*sigma(w)+w^2)), where w=10^n.
13, 136, 1391, 14030, 140865, 1411444, 14128309, 141352267, 1413868217, 14140409111, 141412724154, 1414170403052, 14141919829640, 141420277272713, 1414208167563878, 14142108649717545, 141421221367320690, 1414212888023339560, 14142132251982630599, 141421339378569021517
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..995
Programs
-
Maple
a:= n -> floor(sqrt(2*100^n - 20^n/5 - 50^n/2 + 10^n/10)): map(a, [$1..100]); # Robert Israel, Dec 03 2024
-
Mathematica
a[n_] := Floor[Sqrt[EulerPhi[10^n] * DivisorSigma[1, 10^n] + 100^n]]; Array[a, 20] (* Amiram Eldar, Jun 12 2022 *)
-
PARI
a(n) = my(w=10^n); sqrtint(eulerphi(w)*sigma(w)+w^2); \\ Michel Marcus, Mar 23 2020
-
Python
from sympy import integer_nthroot, totient as phi, divisor_sigma as sigma def isqrt(n): return integer_nthroot(n, 2)[0] def a(n): w = 10**n; return isqrt(phi(w)*sigma(w, 1) + w**2) print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Jun 12 2022
Formula
a(n) = floor(10^n * sqrt(2 - 5^(-n-1) - 2^(-n-1) + 10^(-n-1))). - Robert Israel, Dec 03 2024
Extensions
Corrected and extended by Michel Marcus, Jun 12 2022
Comments