A065577 Number of Goldbach partitions of 10^n.
2, 6, 28, 127, 810, 5402, 38807, 291400, 2274205, 18200488, 149091160, 1243722370, 10533150855, 90350630388
Offset: 1
Examples
a(1)=2 because 10 = 3+7 = 5+5; a(2)=6 because 100 = 3+97 = 11+89 = 17+83 = 29+71 = 41+59 = 47+53; ...
Links
- Ivars Peterson's MathTrek, Goldbach's Prime Pairs
- Science News Online, Goldbach's Prime Pairs, week of Aug. 19, 2000; Vol. 158, No. 8.
Programs
-
Mathematica
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_] := Block[{c = 0, lmt = n/2, p = 3}, While[p <= lmt, If[ PrimeQ[n - p], c++ ]; p = NextPrim@p]; c]; Array[f, 10] (* Robert G. Wilson v, Nov 01 2006 *) a[n]:=Length[Select[n - Prime[Range[PrimePi[n/2]]], PrimeQ]]; Table[a[n],{n, 10^3, 10^3}] (* Luciano Ancora, Mar 16 2015 *)
Formula
a(n) = A061358(10^n).
Extensions
a(9) from Zak Seidov Nov 01 2006
a(10) from R. J. Mathar and David W. Wilson, Nov 02 2006
a(11) from David W. Wilson and Russ Cox, Nov 03 2006
a(12) from Russ Cox, Nov 04 2006
a(13) from Donovan Johnson, Nov 16 2009
a(14) from Huang Yuanbing (bailuzhou(AT)163.com), Dec 24 2009
Comments