cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065769 Prime cascade: multiplicative with a(prime(m)^k) = prime(m-1) * prime(m)^(k-1).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 4, 6, 3, 7, 4, 11, 5, 6, 8, 13, 6, 17, 6, 10, 7, 19, 8, 15, 11, 18, 10, 23, 6, 29, 16, 14, 13, 15, 12, 31, 17, 22, 12, 37, 10, 41, 14, 18, 19, 43, 16, 35, 15, 26, 22, 47, 18, 21, 20, 34, 23, 53, 12, 59, 29, 30, 32, 33, 14, 61, 26, 38, 15, 67, 24, 71, 31, 30, 34
Offset: 1

Views

Author

Henry Bottomley, Nov 19 2001

Keywords

Examples

			a(63) = a(3^2*7^1) = a(3^2)*a(7^1) = (2*3^1)*(5*7^0) = 30.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, NextPrime[p, -1]]*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 02 2023 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A065769(n) = { my(f=factor(n>>valuation(n,2))[, 1]~); (A003557(n) * factorback(vector(#f,i,precprime(f[i]-1)))); }; \\ Antti Karttunen, Dec 31 2017
    
  • Scheme
    (define (A065769 n) (* (A003557 n) (A064989 (A007947 n)))) ;; Antti Karttunen, Dec 31 2017

Formula

a(A000040(n)) = A000040(n-1);
a(A000079(n)) = A000079(n-1);
a(A002110(n)) = A002110(n-1).
a(n) = A003557(n) * A064989(A007947(n)). - Antti Karttunen, Dec 31 2017
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - (p - q(p))/p^2) = 0.526221951..., where q(2) = 1, and q(p) = A151799(p) for an odd prime p. - Amiram Eldar, Nov 02 2023