A065771 Prime powers n such that both tau(n^2) and sigma(n^2) are composite numbers.
16, 81, 128, 625, 1024, 2187, 2401, 4096, 8192, 14641, 28561, 59049, 65536, 78125, 83521, 130321, 131072, 279841, 524288, 531441, 707281, 823543, 923521, 1594323, 1874161, 2825761, 3418801, 4194304, 4879681, 7890481, 9765625, 12117361, 13845841, 16777216
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Do[ s=DivisorSigma[ 0, n^2 ]; y=DivisorSigma[ 1, n^2 ]; If[ Equal[ Length[ FactorInteger[ n ] ], 1 ]&&!PrimeQ[ n ] &&!PrimeQ[ s ]&&!PrimeQ[ y ], Print[ n ] ], {n, 1, 10000000} ] Select[Range[16778000],PrimePowerQ[#]&&AllTrue[{DivisorSigma[ 0,#^2],DivisorSigma[ 1,#^2]},CompositeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 18 2021 *)