A065772 Nontrivial prime powers k from A025475 such that tau(k^2) is prime but sigma(k^2) is a composite number.
9, 25, 32, 121, 243, 343, 361, 961, 1331, 1369, 1681, 2048, 2209, 2809, 3481, 3721, 4489, 5041, 6561, 6859, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16384, 16807, 17161, 18769, 19321, 19683, 22201, 22801, 24389, 24649, 26569
Offset: 1
Keywords
Examples
For k = 32: k^2 = 1024, tau(1024) = 11, sigma(1024) = 2047 = 23*89. For k = 243, k^2 = 59049, tau(59049) = 11, sigma(59049) = 88573 = 23*3851. Up to 10000000, 453 terms were found.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Do[ s=DivisorSigma[ 0, n^2 ]; y=DivisorSigma[ 1, n^2 ]; If[ Equal[ Length[ FactorInteger[ n ] ], 1 ]&&!PrimeQ[ n ] &&PrimeQ[ s ]&&!PrimeQ[ y ], Print[ n ] ], {n, 1, 10000000} ]
Comments