cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A065782 a(1) = 36; for n > 1, a(n) is the smallest square > a(n-1) with a(n-1) forming its final digits.

Original entry on oeis.org

36, 1936, 6031936, 1556366031936, 46157300861556366031936, 896725409027114346157300861556366031936, 56096202719698239565812734781810166896725409027114346157300861556366031936
Offset: 1

Views

Author

Klaus Brockhaus, Nov 19 2001

Keywords

Crossrefs

Extensions

More terms from Ulrich Schimke (ulrschimke(AT)aol.com), Dec 18 2001

A065784 a(1) = 36; for n > 1, a(n) is the smallest integer > 0 such that the concatenation a(n)a(n-1)...a(2)a(1) is a square.

Original entry on oeis.org

36, 19, 603, 155636, 4615730086, 8967254090271143, 56096202719698239565812734781810166, 45033337806374635393337595037647446798889403018884984457350362192958678
Offset: 1

Views

Author

Klaus Brockhaus, Nov 19 2001

Keywords

Crossrefs

Extensions

More terms from Ulrich Schimke (ulrschimke(AT)aol.com), Dec 18 2001

A065808 Square of n has a smaller square as its final digits.

Original entry on oeis.org

7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88
Offset: 1

Views

Author

Klaus Brockhaus, Nov 22 2001

Keywords

Comments

Includes all n >= 7 not == 4 or 6 (mod 10). - Robert Israel, Oct 24 2017

Crossrefs

A065807 gives the corresponding squares.

Programs

  • Maple
    filter:= n ->
      ormap(t -> issqr(n^2 mod 10^t), [$1..ilog10(n^2)]):
    select(filter, [$1..100]); # Robert Israel, Oct 24 2017
  • Mathematica
    ds[n_] := NestWhileList[FromDigits[Rest[IntegerDigits[#]]] &, n, # > 9 &]; Select[Range[4, 88], Or @@ IntegerQ /@ Sqrt[Rest[ds[#^2]]] &] (* Jayanta Basu, Jul 10 2013 *)
  • PARI
    a065808(m) = local(k, a, b, d, j, n, r); for(k=1, m, a=length(Str(n))-1; b=1; j=1; n=k^2; while(b, d=divrem(n, 10^j); if(d[1]>0&&issquare(d[2]), b=0; issquare(n, &r); print1(r, ","), if(j
    				

Extensions

Offset changed to 1 by Robert Israel, Oct 24 2017
Showing 1-3 of 3 results.