A065803 a(n) = (sigma_2(n) mod 2) * (sigma_2(n) mod 5). Residue-product modulo 2 and 5 of sum of square of divisors.
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3
Offset: 1
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..101761 (terms 1..10000 from Charles R Greathouse IV)
- Robert Price, Comments on A065803 concerning Elementary Cellular Automata, Jan 29 2016
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
Programs
-
Maple
A001157 := proc(n) numtheory[sigma][2](n) ; end proc: A065803 := proc(n) (A001157(n) mod 2)*(A001157(n) mod 5) ; end proc: # R. J. Mathar, Apr 02 2011
-
Mathematica
Array[Mod[#, 2] Mod[#, 5] &@ DivisorSigma[2, #] &, 121] (* Michael De Vlieger, Jan 19 2020 *)
-
PARI
a(n)=if(issquare(n), sigma(n,2)%5, 0) \\ Charles R Greathouse IV, Nov 19 2014
Extensions
Data section extended up to a(121) by Antti Karttunen, Jan 18 2020
Comments