A065824 Smallest solution m to (n+1)*phi(m) = n*sigma(m), or -1 if no solution exists.
3, 5, 7, 323, 11, 13, 899, 17, 19, 1763, 23, 5249, 3239, 29, 31, 979801, 5459, 37, 10763, 41, 43, 9179, 47, 9701, 10403, 53, 12319, 5646547, 59, 61, 24569, 19109, 67, 19043, 71, 73, 22499, 50819, 79, 41309, 83, 32639, 46979, 89, 34579, 39059, 125969
Offset: 1
Links
- Donovan Johnson, Table of n, a(n) for n = 1..456
Crossrefs
Programs
-
Mathematica
max = 10^7; a[n_] := For[m = 3, m <= max, m++, If[(n+1)*EulerPhi[m] == n*DivisorSigma[1, m], Print[m]; Return[m]]] /. Null -> -1; Array[a, 50] (* Jean-François Alcover, Oct 08 2016 *)
-
Python
from itertools import count from math import prod from sympy import factorint def A065824(n): for m in count(1): f = factorint(m) if (n+1)*m*prod((p-1)**2 for p in f)==n*prod(p**(e+2)-p for p,e in f.items()): return m # Chai Wah Wu, Aug 12 2024
Comments