cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A065884 a(n) = A065824(A047845(n+1)).

Original entry on oeis.org

323, 899, 1763, 5249, 3239, 979801, 5459, 10763, 9179, 9701, 10403, 12319, 5646547, 24569, 19109, 19043, 22499, 50819, 41309, 32639, 46979, 34579, 39059, 125969, 49769, 49949, 154559, 48554797, 114953, 52532203, 56624063, 195499, 75077, 79799, 72899
Offset: 1

Views

Author

Labos Elemer, Nov 27 2001

Keywords

Comments

By definition (m+1)*phi(a(n)) = m*sigma(a(n)) where m=A065824(n+1).

Examples

			A065824(4) = 323, so a(1) = A065824[A047845(1+1)] = 323 A065824(16) = 979801 and a(6) = 979801 = A065824[A047845(1+6)]
		

Crossrefs

Programs

  • Python
    from math import prod
    from itertools import count
    from sympy import factorint, primepi
    def A065884(n):
        m, k = n, primepi(n+1) + n + (n+1>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        m = m-1>>1
        for k in count(1):
            f = factorint(k)
            if (m+1)*k*prod((p-1)**2 for p in f)==m*prod(p**(e+2)-p for p,e in f.items()):
                return k # Chai Wah Wu, Aug 12 2024

Extensions

Name corrected and more terms from Sean A. Irvine, Sep 17 2023

A375262 Least positive integer m such that sigma(m)/phi(m) = n + 1/2, where sigma(.) and phi(.) are given by A000203 and A000010, respectively.

Original entry on oeis.org

5, 459, 4, 10, 860, 18, 24, 11904, 588, 60, 1481172, 1080, 1320, 6236370, 1680, 144480, 10920, 674520, 27720, 25604040, 662535720, 1413720, 303783480, 4324320, 701205120
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 08 2024

Keywords

Comments

Conjecture: Any rational number r >= 1 can be written as sigma(m)/phi(m) with m a positive integer.
We have verified this for rational numbers a/b with 36 >= a >= b >= 1.
In 1977, B.S.K.R. Somayajulu proved that the set {sigma(n)/phi(n): n = 1,2,3,...} is dense in the interval (1,+oo).
a(27) = 790269480. - Chai Wah Wu, Aug 12 2024

Examples

			a(1) = 5 with sigma(5)/phi(5) = 6/4 = 1 + 1/2.
a(2) = 459 = 3^3*17 with sigma(459)/phi(459) = 720/288 = 2 + 1/2.
a(20) = 25604040 = 2^3*3*5*7*11*17*163 with sigma(25604040)/phi(25604040) = 102021120/4976640 = 20 + 1/2.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_]:=sigma[n]=DivisorSigma[1,n]; phi[n_]:=phi[n]=EulerPhi[n];
    tab={};Do[m=1;While[sigma[m]/phi[m]!=n+1/2,m=m+1];tab=Append[tab,m],{n,1,20}];Print[tab]
  • PARI
    a(n) = my(k=1); while (sigma(k)/eulerphi(k) != n + 1/2, k++); k; \\ Michel Marcus, Aug 08 2024
    
  • Python
    from itertools import count
    from math import prod
    from sympy import factorint
    def A375262(n):
        for m in count(1):
            f = factorint(m)
            if ((n<<1)+1)*m*prod((p-1)**2 for p in f)==prod(p**(e+2)-p for p,e in f.items())<<1:
                return m # Chai Wah Wu, Aug 11 2024

Extensions

a(21)-a(24) from Amiram Eldar, Aug 08 2024
a(25) from Chai Wah Wu, Aug 12 2024
Showing 1-2 of 2 results.