A065826 Triangle with T(n,k) = k*E(n,k) where E(n,k) are Eulerian numbers A008292.
1, 1, 2, 1, 8, 3, 1, 22, 33, 4, 1, 52, 198, 104, 5, 1, 114, 906, 1208, 285, 6, 1, 240, 3573, 9664, 5955, 720, 7, 1, 494, 12879, 62476, 78095, 25758, 1729, 8, 1, 1004, 43824, 352936, 780950, 529404, 102256, 4016, 9, 1, 2026, 143520, 1820768, 6551770, 7862124, 3186344, 382720, 9117, 10
Offset: 1
Examples
Rows start: 1; 1, 2; 1, 8, 3; 1, 22, 33, 4; 1, 52, 198, 104, 5; 1, 114, 906, 1208, 285, 6; 1, 240, 3573, 9664, 5955, 720, 7; 1, 494, 12879, 62476, 78095, 25758, 1729, 8; etc.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Ron M. Adin, Sergi Elizalde, Victor Reiner, Yuval Roichman, Cyclic descent extensions and distributions, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018) Vol. 2113.
- Ron M. Adin, Victor Reiner, Yuval Roichman, On cyclic descents for tableaux, arXiv:1710.06664 [math.CO], 2017.
Crossrefs
Cf. A008292.
Programs
-
GAP
Flat(List([1..10],n->List([1..n],k->Sum([0..k],j->k*(-1)^j*(k-j)^n*Binomial(n+1,j))))); # Muniru A Asiru, Mar 09 2019
-
Maple
T:=(n,k)->add(k*(-1)^j*(k-j)^n*binomial(n+1,j),j=0..k): seq(seq(T(n,k),k=1..n),n=1..10); # Muniru A Asiru, Mar 09 2019
-
Mathematica
Array[Range[Length@ #] # &@ CoefficientList[(1 - x)^(# + 1)*PolyLog[-#, x]/x, x] &, 10] (* Michael De Vlieger, Sep 24 2018, after Vaclav Kotesovec at A008292 *)
Formula
T(n, k) = k*(a(n-1, k) + a(n-1, k-1)*(n-k+1)/(k-1)) [with T(n, 1) = 1] = Sum_{j=0..k} k*(-1)^j*(k-j)^n*binomial(n+1, j).
E.g.f.: (exp(x*(1-t)) - 1 - x*(1-t))/((1-t)*(1 - t*exp(x*(1-t)))). - Ira M. Gessel, May 02 2017
Comments