cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065826 Triangle with T(n,k) = k*E(n,k) where E(n,k) are Eulerian numbers A008292.

Original entry on oeis.org

1, 1, 2, 1, 8, 3, 1, 22, 33, 4, 1, 52, 198, 104, 5, 1, 114, 906, 1208, 285, 6, 1, 240, 3573, 9664, 5955, 720, 7, 1, 494, 12879, 62476, 78095, 25758, 1729, 8, 1, 1004, 43824, 352936, 780950, 529404, 102256, 4016, 9, 1, 2026, 143520, 1820768, 6551770, 7862124, 3186344, 382720, 9117, 10
Offset: 1

Views

Author

Henry Bottomley, Dec 06 2001

Keywords

Comments

Row sums are (n+1)!/2, i.e., A001710 offset, implying that if n balls are put at random into n boxes, the expected number of boxes with at least one ball is (n+1)/2 and the expected number of empty boxes is (n-1)/2.
T(n,k) is the number of permutations of {1,2,...,n+1} that start with an ascent and that have k-1 descents. - Ira M. Gessel, May 02 2017

Examples

			Rows start:
  1;
  1,   2;
  1,   8,     3;
  1,  22,    33,     4;
  1,  52,   198,   104,     5;
  1, 114,   906,  1208,   285,     6;
  1, 240,  3573,  9664,  5955,   720,    7;
  1, 494, 12879, 62476, 78095, 25758, 1729, 8;
  etc.
		

Crossrefs

Cf. A008292.

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Sum([0..k],j->k*(-1)^j*(k-j)^n*Binomial(n+1,j))))); # Muniru A Asiru, Mar 09 2019
  • Maple
    T:=(n,k)->add(k*(-1)^j*(k-j)^n*binomial(n+1,j),j=0..k): seq(seq(T(n,k),k=1..n),n=1..10); # Muniru A Asiru, Mar 09 2019
  • Mathematica
    Array[Range[Length@ #] # &@ CoefficientList[(1 - x)^(# + 1)*PolyLog[-#, x]/x, x] &, 10] (* Michael De Vlieger, Sep 24 2018, after Vaclav Kotesovec at A008292 *)

Formula

T(n, k) = k*(a(n-1, k) + a(n-1, k-1)*(n-k+1)/(k-1)) [with T(n, 1) = 1] = Sum_{j=0..k} k*(-1)^j*(k-j)^n*binomial(n+1, j).
E.g.f.: (exp(x*(1-t)) - 1 - x*(1-t))/((1-t)*(1 - t*exp(x*(1-t)))). - Ira M. Gessel, May 02 2017