A065852 Let u be any string of 3 digits from {0,...,n-1}; let f(u) = number of distinct primes, not beginning with 0, formed by permuting the digits of u to a base-n number; then a(n) = max_u f(u).
1, 2, 3, 4, 4, 5, 3, 5, 4, 6, 4, 6, 4, 5, 5, 5, 4, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 2
Examples
a(2)=1 because 101 is prime and there are no two 3-digit primes with the same number of ones in base two.
Crossrefs
Programs
-
Mathematica
c[x_, n_] := Module[{}, Length[Select[Permutations[x], First[#] != 0 && PrimeQ[FromDigits[#, n]] &]]]; A065852[n_] := Module[{i}, Return[ Max[Map[c[#, n] &, DeleteDuplicatesBy[Tuples[Range[0, n - 1], 3], Table[Count[#, i], {i, 0, n - 1}] &]]]]]; Table[A065852[n], {n, 2, 30}] (* Robert Price, Mar 30 2019 *)
Extensions
Definition corrected by David A. Corneth, Apr 23 2016
Comments