A065885 a(n)-1, a(n) and a(n)+1 form three consecutive integers that can be factored into Fibonacci numbers.
2, 3, 4, 5, 9, 25, 26, 64, 169, 441, 1156, 3025, 7921, 20736, 54289, 142129, 372100, 974169, 2550409, 6677056, 17480761, 45765225, 119814916, 313679521, 821223649, 2149991424, 5628750625, 14736260449, 38580030724, 101003831721, 264431464441, 692290561600, 1812440220361
Offset: 1
Examples
440 = 8*55, 441 = 21^2, 442 = 13*34, so 441 is a term of the sequence.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
PARI
a(n)=if(n>7,fibonacci(n-2)^2,[2,3,4,5,9,25,26][n]) \\ Charles R Greathouse IV, Jul 17 2012
-
PARI
Vec(x*(2-x-6*x^2-7*x^3-6*x^4+x^5-37*x^6-29*x^7+14*x^8+x^9)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 30 2016
Formula
Except for n = 1, 2, 4 and 7, a(n) is the square of a Fibonacci number.
From Colin Barker, Sep 30 2016: (Start) (based on the signature given in the link)
a(n) = 2*a(n-1)+2*a(n-2)-a(n-3) for n>10.
G.f.: x*(2-x-6*x^2-7*x^3-6*x^4+x^5-37*x^6-29*x^7+14*x^8+x^9) / ((1+x)*(1-3*x+x^2)).
(End)
a(n) = 3*a(n-1) - a(n-2) - 2*(-1)^n for n >= 10. - Greg Dresden, May 18 2020
Comments