cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065885 a(n)-1, a(n) and a(n)+1 form three consecutive integers that can be factored into Fibonacci numbers.

Original entry on oeis.org

2, 3, 4, 5, 9, 25, 26, 64, 169, 441, 1156, 3025, 7921, 20736, 54289, 142129, 372100, 974169, 2550409, 6677056, 17480761, 45765225, 119814916, 313679521, 821223649, 2149991424, 5628750625, 14736260449, 38580030724, 101003831721, 264431464441, 692290561600, 1812440220361
Offset: 1

Views

Author

John W. Layman, Nov 28 2001

Keywords

Comments

In general it can be shown that F(n-1)F(n+1), F(n)^2, F(n-2)F(n+2) form three consecutive increasing integers when n is odd and F(n-2)F(n+2), F(n)^2, F(n-1)F(n+1) for three consecutive increasing integers when n is even. Thus the sequence is infinite. [Corrected by Charles R Greathouse IV, Jul 17 2012]

Examples

			440 = 8*55, 441 = 21^2, 442 = 13*34, so 441 is a term of the sequence.
		

Crossrefs

Programs

  • PARI
    a(n)=if(n>7,fibonacci(n-2)^2,[2,3,4,5,9,25,26][n]) \\ Charles R Greathouse IV, Jul 17 2012
    
  • PARI
    Vec(x*(2-x-6*x^2-7*x^3-6*x^4+x^5-37*x^6-29*x^7+14*x^8+x^9)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 30 2016

Formula

Except for n = 1, 2, 4 and 7, a(n) is the square of a Fibonacci number.
From Colin Barker, Sep 30 2016: (Start) (based on the signature given in the link)
a(n) = 2*a(n-1)+2*a(n-2)-a(n-3) for n>10.
G.f.: x*(2-x-6*x^2-7*x^3-6*x^4+x^5-37*x^6-29*x^7+14*x^8+x^9) / ((1+x)*(1-3*x+x^2)).
(End)
a(n) = 3*a(n-1) - a(n-2) - 2*(-1)^n for n >= 10. - Greg Dresden, May 18 2020